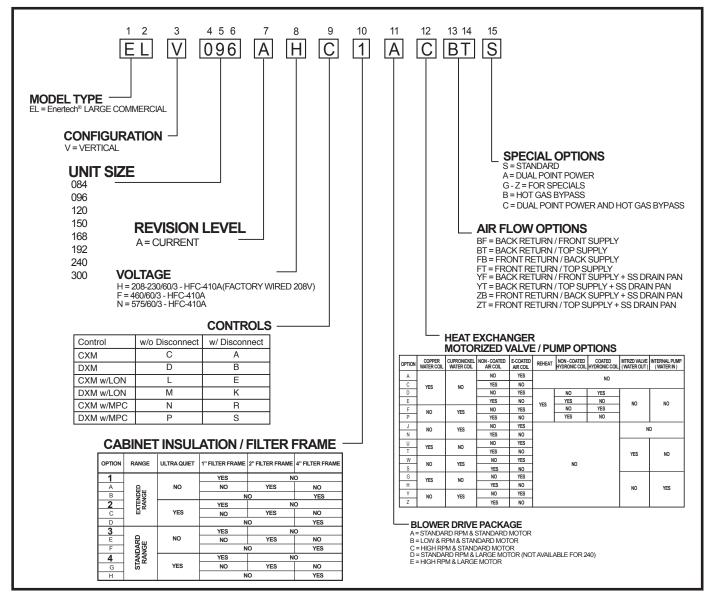
ENERTECH[®] LARGE (ELV) SERIES

COMMERCIAL VERTICAL PACKAGED HEAT PUMP

A MAINTENANCE

97B0067N03 Created: September 1, 2017

ENERTECH[®] Geothermal Made Better[®]


Table of Contents

Model Nomenclature	3
General Information	4
Physical Data	6
ELV084-150 Dimensional Data	7
ELV168-300 Dimensional Data	8
Installation	9
Piping Installation	11
Condensate Installation	12
Water-Loop Heat Pump Applications	13
Ground-Loop Heat Pump Applications	14
Ground-Water Heat Pump Applications	16
Electrical Data	17
Electrical - Power Wiring	21
Electrical - Low Voltage	22
CXM/DXM, LonWorks or MPC Control Operation	23
Series Wiring Diagram Matrix	24
DIP Setting Tables	24
084-150 H, F, N with CXM Schematic	27
084-150 H, F, N with DXM Schematic	28
168-300 H, F, N with CXM Schematic	29
168-300 H, F, N with DXM Schematic	30
Reheat Sequence of Operation	31
CXM Controls	34
DXM Controls	35
Safety Features	37
Blower Adjustment	39
Tensioning V-Belt Drives	40
Blower Sheave Information	41
Blower Performance	42
Blower Performance Data - Units with	
Reheat (PSC Motor)	55
Unit Commissioning & Operating Conditions	56
Piping System Cleaning & Flushing	57
Unit & System Checkout	58
Unit Start Up Procedure	59
Start-up Log Sheet	61
Unit Operating Conditions	62
Preventive Maintenance	63
Functional Troubleshooting	64
Performance Troubleshooting	65
Troubleshooting Form	66
Field Conversion	67
Revision History	80

This Page Intentionally Left Blank

created. September 1, 2017

Model Nomenclature

Notes:

8.

- 1. Reheat option (Digit 12 D, E, F or P) must be ordered with original equipment (cannot be field added). Unit must have DXM control. Not available for units with internal water valve, flow regulator options, or 575Volt. Check unit submittal for limitations and specific requirements.
- 2. Antifreeze is not required for ELV but may be required due to EWT in heating or other models on the same loop.
- 3. Reheat is not recommended for applications with poor water quality (see water quality guidelines in unit IOM). The copper heat exchanger (Digit 12 D or E) with cast iron pump are designed for closed loop systems.
- 4. The cupro-nickel heat exchanger (Digit 12 F or P) also includes bronze pump, and is required for use with open loop or ground water systems.
- 5. Max working water pressure for the reheat option is 145psig [999kPa].
- 6. Thermostat must be either:
 - A. Thermostat with dehumidification mode
 - B. Thermostat and separate humidistat or dehumidistat controller
 - Reheat units must have minimum entering air temperature of 70°F DB / 61°F WB while in the

cooling, continuous fan, or dehumidification modes. Minimum entering air temperature while operating in the heating mode (not continuous fan) is the minimum entering air temperature for the standard model (without the reheat option) in the heating mode. Operating below these minimum entering air temperatures may result in nuisance faults.

General Information

Safety

Warnings, cautions, and notices appear throughout this manual. Read these items carefully before attempting any installation, service, or troubleshooting of the equipment.

DANGER: Indicates an immediate hazardous situation, which if not avoided <u>will result in death or serious injury</u>. DANGER labels on unit access panels must be observed.

WARNING: Indicates a potentially hazardous situation, which if not avoided <u>could result in death or serious injury</u>.

CAUTION: Indicates a potentially hazardous situation or an unsafe practice, which if not avoided <u>could result in</u> <u>minor or moderate injury or product or property damage</u>.

NOTICE: Notification of installation, operation, or maintenance information, which is <u>important</u>, but which is <u>not hazard-related</u>.

WARNING! A

WARNING! The EarthPure[®] Application and Service Manual should be read and understood before attempting to service refrigerant circuits with HFC-410A.

WARNING!

WARNING! To avoid the release of refrigerant into the atmosphere, the refrigerant circuit of this unit must be serviced only by technicians who meet local, state, and federal proficiency requirements.

CAUTION! To avoid equipment damage, DO NOT use these units as a source of heating or cooling during the construction process. The mechanical components and filters will quickly become clogged with construction dirt and debris, which may cause system damage.

WARNING! 🗚

WARNING! The installation of water-source heat pumps and all associated components, parts, and accessories which make up the installation shall be in accordance with the regulations of ALL authorities having jurisdiction and MUST conform to all applicable codes. It is the responsibility of the installing contractor to determine and comply with ALL applicable codes and regulations.

A WARNING! A

WARNING! All refrigerant discharged from this unit must be recovered WITHOUT EXCEPTION. Technicians must follow industry accepted guidelines and all local, state, and federal statutes for the recovery and disposal of refrigerants. If a compressor is removed from this unit, refrigerant circuit oil will remain in the compressor. To avoid leakage of compressor oil, refrigerant lines of the compressor must be sealed after it is removed.

Inspection - Upon receipt of the equipment, carefully check the shipment against the bill of lading. Make sure all units have been received. Inspect the packaging of each unit, and inspect each unit for damage. Insure that the carrier makes proper notation of any shortages or damage on all copies of the freight bill and completes a common carrier inspection report. Concealed damage not discovered during unloading must be reported to the carrier within 15 days of receipt of shipment. If not filed within 15 days, the freight company can deny the claim without recourse. Note: It is the responsibility of the purchaser to file all necessary claims with the carrier. Notify your equipment supplier of all damage within fifteen (15) days of shipment.

Storage - Equipment should be stored in its original packaging in a clean, dry area. Store units in an upright position at all times.

Unit Protection - Cover units on the job site with either the original packaging or an equivalent protective covering. Cap the open ends of pipes stored on the job site. In areas where painting, plastering, and/or spraying has not been completed, all due precautions must be taken to avoid physical damage to the units and contamination by foreign material. Physical damage and contamination may prevent proper start-up and may result in costly equipment clean-up.

Examine all pipes, fittings, and valves before installing any of the system components. Remove any dirt or debris found in or on these components.

Pre-Installation - Installation, Operation, and Maintenance instructions are provided with each unit. Horizontal equipment is designed for installation above false ceiling or in a ceiling plenum. Other unit configurations are typically installed in a mechanical room. The installation site chosen should include adequate service clearance around the unit. Before unit start-up, read all manuals and become familiar with the unit and its operation. Thoroughly check the system before operation.

Prepare units for installation as follows:

- 1. Compare the electrical data on the unit nameplate with ordering and shipping information to verify that the correct unit has been shipped.
- 2. Keep the cabinet covered with the original packaging until installation is complete and all plastering, painting, etc. is finished.
- 3. Verify refrigerant tubing is free of kinks or dents and that it does not touch other unit components.
- 4. Inspect all electrical connections. Connections must be clean and tight at the terminals.
- 5. Some airflow patterns and some control box locations are field convertible. Locate the conversion section of this IOM.

CAUTION! All three phase scroll compressors must have direction of rotation verified at start-up. Verification is achieved by checking compressor Amp draw. Amp draw will be substantially lower compared to nameplate values. Additionally, reverse rotation results in an elevated sound level compared to correct rotation. Reverse rotation will result in compressor internal overload trip within several minutes. Verify compressor type before proceeding.

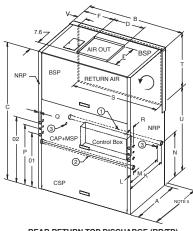
A CAUTION! A

CAUTION! DO NOT store or install units in corrosive environments or in locations subject to temperature or humidity extremes (e.g., attics, garages, rooftops, etc.). Corrosive conditions and high temperature or humidity can significantly reduce performance, reliability, and service life. Always move and store units in an upright position. Tilting units on their sides may cause equipment damage.

▲ CAUTION! ▲

CAUTION! CUT HAZARD - Failure to follow this caution may result in personal injury. Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts and servicing heat pumps.

ELV Physical Data


Model	084	096	120	150	168	192	240	300		
Compressor Quantity			Scroll (1)				Scroll (2)			
Factory Charge HFC-410a (oz) [kg] per circuit	140 [3.97]	156 [4.42]	224 [6.35]	248 [7.03]	140 [3.97]	156 [4.42]	224 [6.35]	248 [7.03]		
Blower Motor				•						
Blower Motor Quantity				1						
Standard Motor (hp) [kW]	1.0 [.75]	1.5 [1.12]	2 [1.49]	3 [2.24]	2 [1.49] 3 [2.24] 5 [3.73]			5 [3.73]		
Large Motor (hp) [kW]	1.5 [1.12]	2.0 [1.49]	3 [2.24]	5 [3.73]	3 [2.24]	5 [3.73]	7.5 [5.60]	7.5 [5.60]		
Blower										
No. of Blowers			1		2					
Blower Wheel Size D x W (in) [cm]	15 :	(11 [38.1 x 3	8.1]	15 x 15 [38.1 x 38.1]	15 x 11 [38.1 x 38.1] 15 x 15 [38.1 x 38					
Water Connection Size										
FPT (in) [mm]		1-1/2" [38.1]			2" [50.8]			2-1/2" [63.5]		
Coax Volume										
Volume (US Gallons) [liters]	2.19	8.28]	2.48 [9.37]	3.46 [13.11]	4.83 [18.29]	6.36 [24.08]	7.39 [27.98]		
Condensate Connection Size										
FPT (in) [mm]				1" [2	5.4]					
Air Coil Data										
Air Coil Dimensions H x W (in) [cm]		36 x 4	8 [91.4 x 121	.9]		2 - 36 x	48 [91.4 x 12	1.9]		
Air Coil Total Face Area (ft ²) [m ²]			12 [1.11]				24 [2.22]			
Miscellaneous Data										
Filter Standard - 1" [25.4mm] Throwaway (qty) (in) [cm]		(QTY.4) 1	8 x 25 [45.74	x 63.5]	(QTY.8) 18 x 25 [45.74 x 63.5]					
Weight - Operating (lbs) [kg]	880	399]	930 [422]	960 [435]	1600	[725]	1665 [755]	1695 [769]		
Weight - Packaged (lbs) [kg]	895	406]	945 [429]	975 [442]	1630	[739]	1695 [769]	1725 [782]		

All units have grommet compressor mountings, and 1/2" & 1-3/4" electrical knockouts. For reheat option, add 125 lbs [57 kg] for 084-150 and 250 lbs [114 kg] for 168-300.

Unit Maximum Water Working Pressure										
Options	Max Pressure PSIG [kPa]									
Base Unit	300 [2,068]									
Motorized Water Valve	300 [2,068]									
Internal Secondary Pump or Reheat	145 [999]									

Use the lowest maximum pressure rating when multiple options are combined.

ELV084-150 Dimensional Data

REAR RETURN TOP DISCHARGE (RR/TD)

 ELV084-120
 ELV150

 1-1/2" FPT
 2" FPT

 1-1/2" FPT
 2" FPT

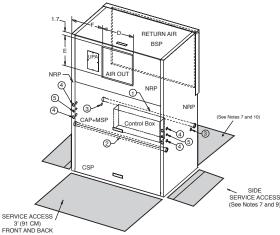
1" FPT

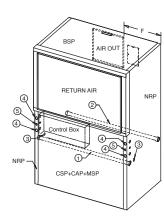
1-3/8" [3.49 CM]

7/8" [2.2 CM]

N	OTES:
1	All dimensions in inches (

4


3


5

4

NRF

- All dimensions in inches (cm)
 Water inlet and water outlet connections are available on either side (left or right) of the unit. Installer must plug water inlet/outlet not being connected to. 3. Condensate drain is available on either side (left or right) of unit. Drain hose and drain
- connection will be tied inside the unit. Installer will untie the drain hose, form trap, and connect to the condensate drain hole of installer's choice.
- 4. Electrical access is available on either side (left or right) of unit and is also available in the
- front on the left or right side of the unit. Overall Depth - Add 3.12"(8 cm) for 1"(2.5 cm) or 2"(5 cm) Filter Frame; 5.12" for 4" Filter Frame and for FD, RD additional 1.06"(2.7 cm) for supply air duct flange.
 Overall cabinet height dimension does not include duct flange when in top discharge
- configuration.
- 7. While access to all removable panels may not be required, installer should take care to
- comply with all building codes and allow adequate clearance for future field service. 8. Units require 3 feet(91 cm) clearance for water connections, CAP, CSP, MSP and BSP
- service access.
 - 9. Side service access must be 2 feet(9.4 cm) on any side that connections are made. If no connections are made on a side then service access can be 6 inches(1.5 cm) minimum. 10. Filter removal is from bottom of frame, allow 2 feet(9.4 cm) access for servicing.

(See Notes 7 and 8)

LEGEND Water Inlet (See Note 2)

Water Outlet (See Note 2) (3) Condensate Drain (See Note 3)

High Voltage Access (See Note 4)

5 Low Voltage Access (See Note 4)

BSP - Blower Service Panel CAP - Control Access Panel CSP - Compressor Access Panel

MSP - Motor Service Panel

NRP - Non Removable Panel UPA - Upper Pulley Access

REAR RETURN FRONT DISCHARGE (RR/FD)

FRONT RETURN REAR DISCHARGE (FR/RD)

		Ove	rall Cat	oinet		rge Conn uct Flang		Water Connections				Electrical Knockouts					Return Air Connections Using Return Air Opening			
Mo	del	A Depth Note 5	B Width	C Height	D Supply Width	E Supply Depth	F	K 1 Water Inlet	L 2 Water Outlet	M 3 Con- densate	N	01	02	Ρ	Q	R	S Return Depth	T Return Height	U	V
084	in.	34.0	53.1	79.0	17.5	17.6	17.8	31.0	3.0	27.0	25.6	31.0	38.0	34.6	1.0	3.0	48.0	32.4	44.6	2.7
-120	cm.	86.4	134.9	200.7	44.5	44.6	45.1	78.7	7.6	68.6	65.1	78.7	96.4	87.7	2.5	7.6	121.9	82.2	113.3	6.9
150	in.	34.0	53.1	79.0	21.4	17.6	17.8	31.0	3.0	27.0	25.6	31.0	38.0	34.6	1.0	3.0	48.0	32.4	44.6	2.7
	cm.	86.4	134.9	200.7	54.4	44.6	45.1	78.7	7.6	68.6	65.1	78.7	96.4	87.7	2.5	7.6	121.9	82.2	113.3	6.9

ALL CONFIGURATIONS REQUIRE SERVICE ACCESS AREA DESCRIBED IN NOTES 7, 8, 9, AND 10.

BSP

RETURN AIR

ന

CSP+CAP+MSF

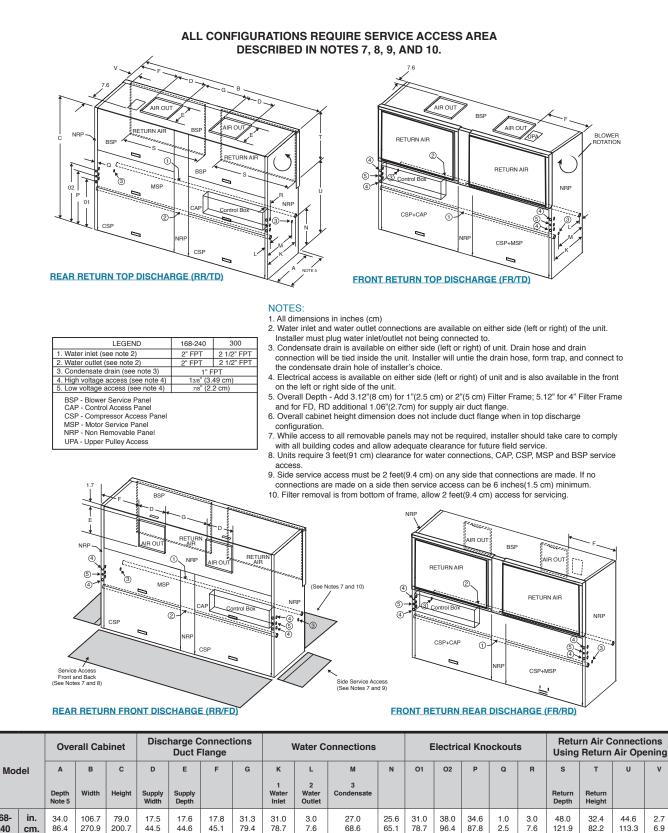
~

AIR OUT

(2)

FRONT RETURN TOP DISCHARGE (FR/TD)

<u>4</u>5


UPA

NRF

3

BLOWER ROTATION

ELV168-300 Dimensional Data

27.0

68.6

25.6

65.1

31.0

78.7

38.0

96.4

34.6

87.8

1.0

2.5

3.0

7.6

48.0

121.9

32.4

82.2

2.7

6.9

44.6

113.3

31.0

78.7

3.0

7.6

168-

240

300

in.

cm.

34.0

86.4

106.7

270.9

21.4

54.4

79.0

200.7

17.6

44.6

17.8

45.1

23.4

59.4

Installation

Figure 2b: Typical Vertical Installation

Vertical Location and Access

ELV units are not designed for outdoor installation. Locate the unit in an indoor area that allows enough space for installation and for service personnel to perform typical maintenance or repairs. ELV units are typically installed in a floor level closet or in a small mechanical room. Refer to Figure 2b for an illustration of a typical installation. Install units with adequate clearance to allow maintenance and servicing. Conform to the following guidelines when selecting unit location:

- Provide adequate clearance for filter replacement and drain pan cleaning. DO NOT block filter access with piping, conduit or other materials. Refer to submittal drawing for Vertical Unit Dimensions.
- Provide access for fan and fan motor maintenance and for servicing of the compressor and coils without removal of the unit.
- Provide an unobstructed path to the unit within the closet or mechanical room to enable removal of the unit if necessary.
- Provide access to water valves and fittings, and screwdriver access to the unit side panels, discharge collar and all electrical connections

Duct System Design & Installation Guidelines

The following application guidelines must be used when installing ELV units. Failure to follow these guidelines could result in unsatisfactory unit performance and/or premature failure of some unit components. Enertech will not warrant, or accept responsibility for products which fail, have defects, damage or insufficient performance as a result of improper application.

- The duct system must be sized to handle the airflow quietly and must not exceed the maximum allowable External Static Pressure. To maximize sound attenuation metal supply and return ducts should include internal insulation or be of duct board construction for the first 10 feet or end of first fullsized elbow.
- Install a flexible connector in all supply and return air ducts close to the unit to inhibit sound transfer to the ducts.
- Do not install uninsulated duct in an unconditioned space. The unit performance will be adversely affected and damage from condensate can occur.

- On units with multiple fan outlets a "pair of pants" duct connection must be used for proper air balance and distribution and to prevent fan oscillation.
- Include at least one 90-degree turn in supply air ducts to reduce noise transmission.
- Existing ducts must be checked to ensure proper size and configuration prior to installation of any replacement unit. Also inspect for and repair all air leaks in existing ducts.
- Units may only be connected to a dedicated duct system. Consult the factory BEFORE connecting multiple units to a common duct system.
- Never connect a unit to a duct system with automatic or modulating dampers, VAV boxes, etc. in the supply air system. Never allow a situation where the total unit CFM can drop below the minimum required for proper unit operation.

- Never connect a bypass damper from the supply air duct to the return air duct. Never allow the return air temperature to drop below the minimum allowable normal temperature for proper unit operation.
- Do not use ELV units for 100% outdoor air treatment. Do not add hot-gas-bypass to "convert" a unit for outdoor air treatment. Always use a dedicated outdoor air unit for outdoor air treatment.
- Do not exceed 10% of the total unit CFM with untreated outdoor air. Mixed air entering unit must be less than 95/75F in cooling mode and greater than 60F in heating mode.

Piping Installation

Installation of Supply and Return Piping

Follow these piping guidelines.

- 1. Install a drain valve at the base of each supply and return riser to facilitate system flushing.
- 2. Install shut-off / balancing valves and unions at each unit to permit unit removal for servicing.
- 3. Place strainers at the inlet of each system circulating pump.
- Select the proper hose length to allow slack between connection points. Hoses may vary in length by +2% to -4% under pressure.
- 5. Refer to Table 1. Do not exceed the minimum bend radius for the hose selected. Exceeding the minimum bend radius may cause the hose to collapse which reduces water flow rate. Install an angle adapter to avoid sharp bends in the hose when the radius falls below the required minimum.

CAUTION! Piping must comply with all applicable codes.

Table 1: Metal Hose Minimum Bend Radii

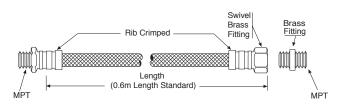
Hoses in Inches	Minimum Bend Radius
1" [25.4mm]	5.5" [140mm]
1.25" [31.8mm]	7.0" [178mm]
1.5" [38.1mm]	8.5" [216mm]

Insulation is not required on loop water piping except where the piping runs through unheated areas or outside the building or when the loop water temperature is below the minimum expected dew point of the pipe ambient. **Insulation is required if loop water temperature drops below the dew point.**

Pipe joint compound is not necessary when Teflon threaded tape is pre-applied to hose assemblies or when flared-end connections are used. If pipe joint compound is preferred, use compound only in small amounts on the male pipe threads of the fitting adapters. Prevent sealant from reaching the flared surfaces of the joint.

🛦 WARNING! 🛦

WARNING! Polyolester Oil, commonly known as POE oil, is a synthetic oil used in many refrigeration systems including those with HFC-410A refrigerant. POE oil, if it ever comes in contact with PVC or CPVC piping, may cause failure of the PVC/CPVC. PVC/CPVC piping should never be used as supply or return water piping with water source heat pump products containing HFC-410A as system failures and property damage may result.


WARNING!

WARNING! Do not bend or kink supply lines or hoses.

A CAUTION! A

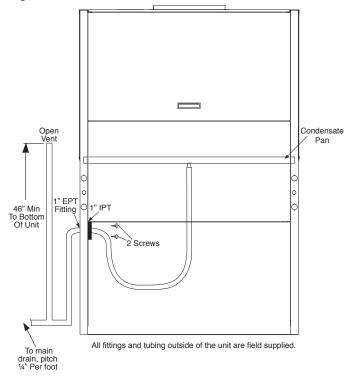
CAUTION! Corrosive system water requires corrosion resistant fittings and hoses and possibly water treatment.

Figure 3: Supply/Return Hose Kit

Note: When antifreeze is used in the loop, assure that it is compatible with Teflon tape or pipe joint compound employed.

Maximum allowable torque for brass fittings is 30 footpounds [41 N-m]. If a torque wrench is not available, tighten finger-tight plus one quarter turn. Tighten steel fittings as necessary.

Optional pressure-rated hose assemblies are available. Similar hoses can be obtained from alternate suppliers. Supply and return hoses are fitted with swivel-joint fittings at one end to prevent kinking during installation. Refer to Figure 3 for an illustration of a Supply/Return Hose Kit. External Pipe Thread (MPT) adapters secure hose assemblies to the unit and risers. Install hose assemblies properly and check them regularly to avoid system failure and reduced service life.


Condensate Installation

Condensate Piping - ELV - Remove KO on side that drain will be connected. Remove access panels. Inside of unit, untie and uncoil drain hose. Form trap in hose, make sure hose is not kinked or deformed. Connect plate assembly to side frame with 2 screws.

Outside of unit, connect 1" MPT fitting to plate assembly. Run line to building drain. Horizontal runs must be pitched ¼" per foot (10 mm per 46 cm) toward drain. Do not trap externally.

Figure 4 illustrates a typical trap and vent used with ELV series equipment.

Figure 4: ELV

Each unit must be installed with its own individual line to the building main condensate drain line or riser. Provide a means to flush or blow out the condensate line. DO NOT install units with a common trap and or vent. Always vent the condensate line when dirt or air can collect in the line or a long horizontal drain line is required. Also vent when large units are working against higher external static pressure than other units connected to the same condensate main since this may cause poor drainage for all units on the line. WHEN A VENT IS INSTALLED IN THE DRAIN LINE, IT MUST BE LOCATED AFTER THE TRAP IN THE DIRECTION OF THE CONDENSATE FLOW and opening 46" (117 cm) minimum from bottom of unit. (Vent per code)

🛦 WARNING! 🛦

WARNING! Ensure condensate line is pitched toward drain 1/4" per foot [10mm per 46cm] of run.

Drain main or riser must be sized for all units connected to it.

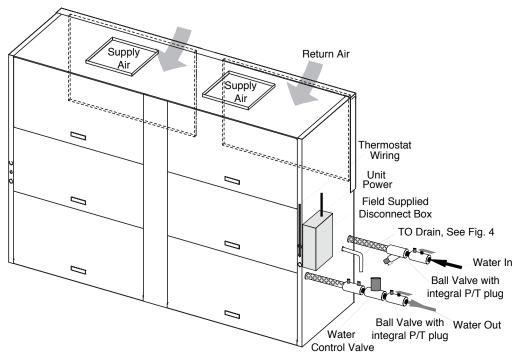
Pipe	Connected	Connected
Size	Tons	kW
3/4" [19mm]	<4	<14
1" [25mm]	<6	<21
1-1/4" [32mm]	<30	<105
1-1/2" [38mm]	<50	<175
2" [51mm]	<150	<527
3" [76mm]	<300	<1055
4" [102mm]	<500	<1758

* Make sure all connections are secure and water tight.

After drain is connected to main and all drain connections are secure and water tight, pour 1 gallon of water into condensate pan. Water should drain out freely. Repair any leaks.

Water-Loop Heat Pump Applications

Commercial systems typically include a number of units plumbed to a common piping system. Any unit plumbing maintenance work can introduce air into the piping system, therefore air elimination equipment is a major portion of the mechanical room plumbing. In piping systems expected to utilize water temperatures below 50°F [10°C], 1/2" [13mm] closed cell insulation is required on all piping surfaces to eliminate condensation. Metal to plastic threaded joints should never be employed due to their tendency to leak over time. Teflon tape thread sealant is recommended to minimize internal fouling of the heat exchanger. Do not overtighten connections and route piping so as not to interfere with service or maintenance access. Hose kits are available from Enertech in different configurations as shown in Figure 5 for connection between the ELV Series and the piping system. The hose kits include shut off valves, P/T plugs for performance measurement, high pressure stainless steel braid hose, "Y" type strainer with blowdown valve, and "J" type swivel connection. Balancing valves to facilitate the balancing of the system, and an external low pressure drop solenoid valve for use in variable speed pumping systems, may also be included in the hose kit. The piping system should be flushed to remove dirt, piping chips, and other foreign material prior to operation. See Piping System Cleaning and Flushing Procedures. The flow rate is usually set between 2.25 and


3.5 gpm per ton [2.9 l/m and 4.5 l/m per kW] of cooling capacity. Enertech recommends 2.5 gpm per ton [3.2 l/m per kW] for most applications of water loop heat pumps. To insure proper maintenance and servicing, P/T ports are imperative for temperature and flow verification, as well as performance checks.

Cooling Tower/Boiler Systems typically utilize a common loop maintained 60-90°F [16-32°C]. The use of a closed circuit evaporative cooling tower with a secondary heat exchanger between the tower and the water loop is recommended. If an open type cooling tower is used continuously, chemical treatment and filtering will be necessary.

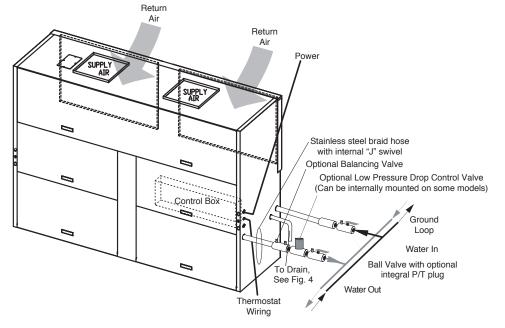
Low Water Temperature Cutout Setting -

CXM or DXM Control:

When an antifreeze is selected, the LT1 jumper (JW3) should be clipped to select the low temperature (Antifreeze 13°F [-10.6°C]) setpoint to avoid nuisance faults. See Low Water Temperature Cutout Selection. NOTE THAT THE EXTENDED RANGE OPTION SHOULD BE SELECTED WHEN LOOP CONDITIONS ARE EXPECTED TO DROP BELOW 60°F [16°C].

Figure 5: Typical Water Loop Application

Ground-Loop Heat Pump Applications


CAUTION!

CAUTION! The following instructions represent industry accepted installation practices for Closed Loop Earth Coupled Heat Pump Systems. They are provided to assist the contractor in installing trouble free ground loops. These instructions are recommended only. State and Local Codes MUST be followed and installation MUST conform to ALL applicable Codes. It is the responsibility of the Installing contractor to determine and comply with ALL applicable Codes and Regulations.

Pre-Installation - Prior to installation, locate and mark all existing underground utilities, piping, etc. Install loops for new construction before sidewalks, patios, driveways, and other construction has begun. During construction, accurately mark all ground loop piping on the plot plan as an aid in avoiding potential future damage to the installation.

Piping Installation - The typical closed loop ground source system is shown in Figure 6. All earth loop piping materials should be limited to only polyethylene fusion for inground sections of the loop. Galvanized or steel fitting should not be used at any time due to their tendency to corrode. All plastic to metal threaded fittings should be avoided due to their potential to leak in earth coupled applications and a flanged fitting substituted. P/T plugs should be used so that flow can be measured using the pressure drop of the unit heat exchanger in lieu of other flow measurement means. Earth loop temperatures can range between 25 to 110°F (-4 to 43°C), and 2.25 to 3 gpm of flow per ton (2.41 l/m to 3.23 l/m per kW) of cooling capacity is recommended in these applications. Upon completion of the ground loop piping, pressure test the loop to assure a leak free system.

Flushing the Earth Loop - Upon completion of system installation and testing, flush the system to remove all foreign objects and purge to remove all air.

Figure 6: Typical Earth Loop Application

Table 2: Antifreeze Percentages by Volume

Turne	Minimum Temperature for Low Temperature Protection								
Туре	10°F [-12.2°C]	15°F [-9.4°C]	20°F [-6.7°C]	25°F [-3.9°C]					
Methanol 100% USP food grade Propylene Glycol Ethanol*	25% 38% 29%	21% 25% 25%	16% 22% 20%	10% 15% 14%					

* Must not be denatured with any petroleum based product

Antifreeze - In areas where minimum entering loop temperatures drop below 40°F (5°C) or where piping will be routed through areas subject to freezing, anti-freeze is needed. Alcohols and glycols are commonly used as antifreezes, however your local sales manager should be consulted for the antifreeze best suited to your area. Low temperature protection should be maintained to 15°F (9°C) below the lowest expected entering loop temperature. For example, if 30°F (-1°C) is the minimum expected entering loop temperature, the leaving loop temperature would be 25 to 22°F (-4 to -6°C) and low temperature protection should be at 15°F (-10°C) e.g. 30°F - 15°F = 15°F (-1°C - 9°C = -10°C). All alcohols should be premixed and pumped from a reservoir outside of the building when possible or introduced under water level to prevent fuming. Initially calculate the total volume of fluid in the piping system. Then use the percentage by volume shown in Table 2 for the amount of antifreeze. Antifreeze concentration should be checked from a well mixed sample using a hydrometer to measure specific gravity.

Low Water Temperature Cut-Out Setting -

CXM or DXM Control: When an antifreeze is selected, the LT1 jumper (JW3) should be clipped to select the low temperature (Antifreeze 10°F [-12.2°C]) setpoint to avoid nuisance faults.

Ground-Water Heat Pump Applications

Shut off valves should be included in case of servicing. Boiler drains or other valves should be 'tee'd' into the line to allow acid flushing of just the heat exchanger. Pressure temperature plugs should be used so that flow and temperature can be measured. Supply and return water piping materials should be limited to copper, PE, or similar material. PVC or CPVC should never be used as they are incompatible with the POE oils used in HFC-410A products and piping system failure and property damage may result.

🛦 WARNING! 🛦

WARNING! Polyolester Oil, commonly known as POE oil, is a synthetic oil used in many refrigeration systems including those with HFC-410A refrigerant. POE oil, if it ever comes in contact with PVC or CPVC piping, may cause failure of the PVC/CPVC. PVC/CPVC piping should never be used as supply or return water piping with water source heat pump products containing HFC-410A as system failures and property damage may result.

Water quantity should be plentiful and of good quality. Consult Table 3 for water quality guidelines. The unit can be ordered with either a copper or cupro-nickel water heat exchanger. Consult Table 3 for recommendations. Copper is recommended for closed loop systems and open loop ground water systems that are not high in mineral content or corrosiveness. In conditions anticipating heavy scale formation or in brackish water, a cupro-nickel heat exchanger is recommended. In ground water situations where scaling could be heavy or where biological growth such as iron bacteria will be present, a closed loop system is recommended. Heat exchanger coils may over time lose heat exchange capabilities due to a build up of mineral deposits inside. These can be cleaned only by a qualified service mechanic as acid and special pumping equipment are required. Desuperheater coils can likewise become scaled and possibly plugged. In areas with extremely hard water, the owner should be informed that the heat exchanger may require occasional acid flushing.

Expansion Tank and Pump - Use a closed, bladder-type expansion tank to minimize mineral formation due to air exposure. The expansion tank should be sized to handle at least one minute run time of the pump to prevent premature pump failure using its drawdown capacity rating. Discharge water from the unit is not contaminated in any manner and can be disposed of in various ways, depending on local building codes, i.e. recharge well, storm sewer, drain field, adjacent stream or pond, etc. Most local codes forbid the use of sanitary sewer for disposal. Consult your local building and zoning department to assure compliance in your area.

Water Control Valve - Note the placement of the water control valve. Always maintain water pressure in the heat exchanger by placing water control valves at the outlet of the unit to prevent mineral precipitation during the offcycle. Pilot operated slow closing valves are recommended to reduce water hammer. If water hammer persists, a mini-expansion tank can be mounted on the piping to help absorb the excess hammer shock. Insure that the total 'VA' draw of the valve can be supplied by the unit transformer. For instance, the slow closing valve can draw up to 35VA. This can overload smaller 40 or 50 VA transformers depending on the other controls employed. A typical pilot operated solenoid valve draws approximately 15VA.

Flow Regulation - Flow regulation can be accomplished by two methods. Most water control valves have a built in flow adjustment. By measuring the pressure drop through the unit heat exchanger, flow rate can be determined and compared to Table 7. Since the pressure is constantly varying, two pressure gauges might be needed. Simply adjust the water control valve until the desired flow of 1.5 to 2 gpm per ton (2.0 to 2.6 l/m per kW) is achieved. Secondly, a flow control device may be installed. The devices are typically an orifice of plastic material that are designed to allow a specified flow rate. These are mounted on the outlet of the water control valve. On occasion, these valves can produce a velocity noise that can be reduced by applying some back pressure. This is accomplished by slightly closing the leaving isolation valve of the well water setup.

Ground-Water Heat Pump Applications

CAUTION! A

CAUTION! Low Water Temperature Cut-Out Setting For all open loop systems the 30°F (-1.1°C) LT1 setting (factory setting-water) should be used to avoid freeze damage to the unit. See Low temperature protection selection for closed loop systems with anitfreeze.

Table 3: Water Quality Standards

Water Quality Parameter	HX Material	Closed Recirculating	Open Lo	oop and Recirculating	g Well				
Scaling Potential - Primary	Measuren	hent	•						
Above the given limits, scaling is likely t	o occur. Scalir	ng indexes should be cal	culated using the limits bel	ow					
pH/Calcium Hardness Method	All	-	pH < 7	7.5 and Ca Hardness <1	l00ppm				
Index Limits for Probable S	caling Sit	uations - (Operation	outside these limits is r	not recommended)					
Scaling indexes should be calculated at A monitoring plan should be implement		ct use and HWG applicat	tions, and at 32°C for indir	ect HX use.					
Ryznar Stability Index	All	-	lf >	6.0 - 7.5 7.5 minimize steel pipe	use.				
Langelier Saturation Index	All	-	-0.5 to +0.5 If <-0.5 minimize steel pipe use. Based upon 66°C HWG and Direct well. 29°C Indirect Well HX						
Iron Fouling	•	•	-	· · · · ·					
Iron Fe ²⁺ (Ferrous) (Bacterial Iron potential)	All	-	If Fe ²⁺ (ferrous)>0.2 ppm	<0.2 ppm (Ferrous) with pH 6 - 8, O2<5 ppm	n check for iron bacteria.				
Iron Fouling	All	-	Above this level deposition	<0.5 ppm of Oxygen on will occur.					
Corrosion Prevention	•	<u>.</u>	-						
		6 - 8.5		6 - 8.5					
рН	All	Monitor/treat as needed	Minimize steel pipe below	•	ith pH <8				
Hydrogen Sulfide (H ₂ S)	All	-	- Rotten e	<0.5 ppm use of copper and copp gg smell appears at 0.5 or brass) cast component	ppm level.				
Ammonia ion as hydroxide, chloride, nitrate and sulfate compounds	All	-		<0.5 ppm					
	-		Maximum Allo	wable at maximum wate	er temperature.				
			10°C	24°C	38 °C				
Maximum Chloride Levels	Copper Cupronickel 304 SS 316 SS		<20ppm <150 ppm <400 ppm <1000 ppm	NR NR <250 ppm <550 ppm	NR NR <150 ppm < 375 ppm				
Erosion and Clogging	Titanium	-	>1000 ppm	>550 ppm	>375 ppm				
Particulate Size and Erosion	All	<10 ppm of particles and a maximum velocity of 1.8 m/s Filtered for maximum 841 micron [0.84 mm, 20 mesh] size.	<10 ppm (<1 ppm "sandfree" for reinjection) of particles and a maximu velocity of 1.8 m/s. Filtered for maximum 841 micron 0.84 mm, 20 mesh] size. Any particulate that is not removed can potentially clog components.						

This Water Quality Table provides water quality requirements for Enertech coaxial heat exchangers. The water should be evaluated by an independent testing facility comparing to this Table and when properties are outside of these requirements, an external secondary heat exchanger must be used to isolate the heat pump heat exchanger from the unsuitable water. Failure to do so will void the warranty for the coaxial heat exchanger and any other components damaged by a leak.

Notes:

Closed Recirculating system is identified by a closed pressurized piping system.
 Recirculating open wells should observe the open recirculating design considerations.
 NR - Application not recommended.

• "-" No design Maximum.

Electrical Data

▲ WARNING! ▲

WARNING! To avoid possible injury or death due to electrical shock, open the power supply disconnect switch and secure it in an open position during installation.

▲ CAUTION! ▲

CAUTION! Use only copper conductors for field installed electrical wiring. Unit terminals are not designed to accept other types of conductors.

Table 4A: ELV Electrical Data Standard

	Voltage		Min/Max	Blower		Compresso	r	Fan	Total	Min	Мах
Model	Code	Voltage	Voltage	Option	QTY	RLA	LRA	Motor FLA	Unit FLA	Circuit Amp	Fuse/ HACR
	Н	208-3-60	197/254	A, B, C	1	23.2	164.0	4.0	27.2	33.0	50
	H	208-3-60	197/254	D, E	1	23.2	164.0	5.0	28.2	34.0	50
	F	460-3-60	414/506	A, B, C	1	11.2	75.0	2.0	13.2	16.0	25
ELV084	F	460-3-60	414/506	D, E	1	11.2	75.0	2.4	13.6	16.4	25
	N	575-3-60	518/633	A, B, C	1	7.9	54.0	1.4	9.3	11.3	15
	N	575-3-60	518/633	D, E	1	7.9	54.0	1.9	9.8	11.8	15
	Н	208-3-60	197/254	A, B, C	1	25.0	164.0	5.0	30.0	36.3	60
	Н	208-3-60	197/254	D, E	1	25.0	164.0	6.2	31.2	37.5	60
ELV096	F	460-3-60	414/506	A, B, C	1	12.2	100.0	2.4	14.6	17.6	25
ELV096	F	460-3-60	414/506	D, E	1	12.2	100.0	3.1	15.3	18.4	30
	N	575-3-60	518/633	A, B, C	1	9.0	78.0	1.9	10.9	13.1	20
	N	575-3-60	518/633	D, E	1	9.0	78.0	2.3	11.3	13.6	20
	Н	208-3-60	197/254	A, B, C	1	30.1	225.0	6.2	36.3	43.8	70
	Н	208-3-60	197/254	D, E	1	30.1	225.0	9.2	39.3	46.8	70
	F	460-3-60	414/506	A, B, C	1	16.7	114.0	3.1	19.8	24.0	40
ELV120	F	460-3-60	414/506	D, E	1	16.7	114.0	4.3	21.0	25.2	40
	N	575-3-60	518/633	A, B, C	1	12.2	80.0	2.3	14.5	17.5	25
	N	575-3-60	518/633	D, E	1	12.2	80.0	3.4	15.6	18.6	30
	H	208-3-60	197/254	A, B, C	1	48.1	245.0	9.2	57.3	69.3	110
	H	208-3-60	197/254	D, E	1	48.1	245.0	14.1	62.2	74.2	110
	F			,	1		125.0	4.3		27.6	45
ELV150	F	460-3-60	414/506	A, B, C	1	18.6 18.6			22.9		45 45
		460-3-60	414/506	D, E			125.0	7.0	25.6	30.3	-
	N	575-3-60	518/633	A, B, C	1	14.7	100.0	3.4	18.1	21.8	35
	N	575-3-60	518/633	D, E	1	14.7	100.0	5.2	19.9	23.6	35
	H	208-3-60	197/254	A, B, C	2	23.2	164.0	6.2	52.6	58.4	80
	H	208-3-60	197/254	D, E	2	23.2	164.0	9.2	55.6	61.4	80
ELV168	F	460-3-60	414/506	A, B, C	2	11.2	75.0	3.1	25.5	28.3	35
	F	460-3-60	414/506	D, E	2	11.2	75.0	4.3	26.7	29.5	40
	N	575-3-60	518/633	A, B, C	2	7.9	54.0	2.3	18.1	20.1	25
	N	575-3-60	518/633	D, E	2	7.9	54.0	3.4	19.2	21.2	25
	Н	208-3-60	197/254	A, B, C	2	25.0	164.0	9.2	59.2	65.4	90
	Н	208-3-60	197/254	D, E	2	25.0	164.0	14.1	64.1	70.3	90
ELV192	F	460-3-60	414/506	A, B, C	2	12.2	100.0	4.3	28.7	31.8	40
LLTTOL	F	460-3-60	414/506	D, E	2	12.2	100.0	7.0	31.4	34.5	45
	N	575-3-60	518/633	A, B, C	2	9.0	78.0	3.4	21.4	23.6	30
	N	575-3-60	518/633	D, E	2	9.0	78.0	5.2	23.2	25.5	30
	Н	208-3-60	197/254	A, B, C	2	30.1	225.0	14.1	74.3	81.8	110
	Н	208-3-60	197/254	E	2	30.1	225.0	21.7	81.9	89.4	110
ELV240	F	460-3-60	414/506	A, B, C	2	16.7	114.0	7.0	40.4	44.6	60
LLV240	F	460-3-60	414/506	E	2	16.7	114.0	10.0	43.4	47.6	60
	N	575-3-60	518/633	A, B, C	2	12.2	80.0	5.2	29.6	32.6	40
	N	575-3-60	518/633	E	2	12.2	80.0	7.7	32.1	35.1	45
	Н	208-3-60	197/254	A, B, C	2	48.1	245.0	14.1	110.3	122.3	150
	Н	208-3-60	197/254	D, E	2	48.1	245.0	21.7	117.9	129.9	175
FLVOOD	F	460-3-60	414/506	A, B, C	2	18.6	125.0	7.0	44.2	48.9	60
ELV300	F	460-3-60	414/506	D, E	2	18.6	125.0	10.0	47.2	51.9	70
	N	575-3-60	518/633	A, B, C	2	14.7	100.0	5.2	34.6	38.3	50
	N	575-3-60	518/633	D, E	2	14.7	100.0	7.7	37.1	40.8	50

Table 4B: ELV Electrical Data Dual Point Power

							Cor	npressor			Emer	gency Powe	r Supply
Model	Voltage Code	Voltage	Min/Max Voltage	Blower Option	QTY	RLA	LRA	Total Comp FLA	Comp MCA	Comp Max Fuse/ HACR	Total Unit FLA	Min Circuit Amp	Max Fuse/ HACR
	Н	208-3-60	197/254	A, B, C	1	23.2	164.0	23.2	29.0	50	4.0	5.0	15
	Н	208-3-60	197/254	D, E	1	23.2	164.0	23.2	29.0	50	5.0	6.3	15
	F	460-3-60	414/506	A, B, C	1	11.2	75.0	11.2	38.0	25	2.0	2.5	15
ELV064	F	460-3-60	414/506	D, E	1	11.2	75.0	11.2	38.0	25	2.4	3.0	15
ELV084 ELV120 ELV120 ELV150	Ν	575-3-60	518/633	A, B, C	1	7.9	54.0	7.9	9.9	15	1.4	1.8	15
	Ν	575-3-60	518/633	D, E	1	7.9	54.0	7.9	9.9	15	1.9	2.4	15
	Н	208-3-60	197/254	A, B, C	1	25.0	164.0	25.0	31.3	50	5.0	6.3	15
	Н	208-3-60	197/254	D, E	1	25.0	164.0	25.0	31.3	50	6.2	7.8	15
	F	460-3-60	414/506	A, B, C	1	12.2	100.0	12.2	15.3	25	2.4	3.0	15
LLVUJU	F	460-3-60	414/506	D, E	1	12.2	100.0	12.2	15.3	25	3.1	3.9	15
	Ν	575-3-60	518/633	A, B, C	1	9.0	78.0	9.0	11.3	20	1.9	2.4	15
	Ν	575-3-60	518/633	D, E	1	9.0	78.0	9.0	11.3	20	2.3	2.9	15
	Н	208-3-60	197/254	A, B, C	1	30.1	225.0	30.1	37.6	60	6.2	7.8	15
	Н	208-3-60	197/254	D, E	1	30.1	225.0	30.1	37.6	60	9.2	11.5	20
ELV120	F	460-3-60	414/506	A, B, C	1	16.7	114.0	16.7	20.9	35	3.1	3.9	15
ELV120	F	460-3-60	414/506	D, E	1	16.7	114.0	16.7	20.9	35	4.3	5.4	15
-	Ν	575-3-60	518/633	A, B, C	1	12.2	80.0	12.2	15.3	25	2.3	2.9	15
-	Ν	575-3-60	518/633	D, E	1	12.2	80.0	12.2	15.3	25	3.4	4.3	15
	Н	208-3-60	197/254	A, B, C	1	48.1	245.0	48.1	60.1	100	9.2	11.5	20
-	Н	208-3-60	197/254	D, E	1	48.1	245.0	48.1	60.1	100	14.1	17.6	30
	F	460-3-60	414/506	A, B, C	1	18.6	125.0	18.6	23.3	40	4.3	5.4	15
ELV150	F	460-3-60	414/506	D, E	1	18.6	125.0	18.6	23.3	40	7.0	8.8	15
ELVISU	Ν	575-3-60	518/633	A, B, C	1	14.7	100.0	14.7	18.4	30	3.4	4.3	15
	Ν	575-3-60	518/633	D, E	1	14.7	100.0	14.7	18.4	30	5.2	6.5	15
	Н	208-3-60	197/254	A, B, C	2	23.2	164.0	46.4	52.2	70	6.2	7.8	15
	Н	208-3-60	197/254	D, E	2	23.2	164.0	46.4	52.2	70	9.2	11.5	20
	F	460-3-60	414/506	A, B, C	2	11.2	75.0	22.4	25.2	35	3.1	3.9	15
ELV168	F	460-3-60	414/506	D, E	2	11.2	75.0	22.4	25.2	35	4.3	5.4	15
-	N	575-3-60	518/633	A, B, C	2	7.9	54.0	15.8	17.8	25	2.3	2.9	15
	N	575-3-60	518/633	D, E	2	7.9	54.0	15.8	17.8	25	3.4	4.3	15
	Н	208-3-60	197/254	A, B, C	2	25.0	164.0	50.0	56.3	80	9.2	11.5	20
	H	208-3-60	197/254	D, E	2	25.0	164.0	50.0	56.3	80	14.1	17.6	30
	F	460-3-60	414/506	A, B, C	2	12.2	100.0	24.4	27.4	35	4.3	5.4	15
ELV192	F	460-3-60	414/506	D, E	2	12.2	100.0	24.4	27.4	35	7.0	8.8	15
	N	575-3-60	518/633	A, B, C	2	9.0	78.0	18.0	20.3	25	3.4	4.3	15
	N	575-3-60	518/633	D, E	2	9.0	78.0	18.0	20.3	25	5.2	6.5	15
	H	208-3-60	197/254	A, B, C	2	30.1	225.0	60.2	67.7	90	14.1	17.6	30
	н	208-3-60	197/254	<u>л, b, с</u>	2	30.1	225.0	60.2	67.7	90	21.7	27.1	45
	F	460-3-60	414/506	A, B, C	2	16.7	114.0	33.4	37.6	50	7.0	8.8	15
ELV240	 F	460-3-60	414/506	E E	2	16.7	114.0	33.4	37.6	50	10.0	12.5	20
ELV240	N N	575-3-60	518/633	A, B, C	2	12.2	80.0	24.4	27.4	35	5.2	6.5	15
	N	575-3-60	518/633	E A, B, C	2	12.2	80.0	24.4	27.4	35	7.7	9.6	15
	H	208-3-60	197/254	A, B, C	2	48.1	245.0	96.2	108.2	150	14.1	17.6	30
	<u>н</u>		197/254				245.0				21.7	27.1	45
	<u> </u>	208-3-60		D, E	2	48.1		96.2	108.2	150	-		
ELV300	F	460-3-60	414/506	A, B, C		18.6	125.0	37.2	41.9	60 60	7.0	8.8	15
		460-3-60	414/506	D, E	2	18.6	125.0	37.2	41.9	60	10.0	12.5	20
-	N	575-3-60	518/633	A, B, C	2	14.7	100.0	29.4	33.1	45	5.2	6.5	15
	N	575-3-60	518/633	D, E	2	14.7	100.0	29.4	33.1	45	7.7	9.6	15

HACR circuit breaker in USA only

All fuses Class RK-5

	Voltage		Min/Max	Blower	С	ompres	sor	Fan	Pu	mp	Total	Unit Circuit Max Fus FLA Amp /HACF 28.3 34.1 50 9.3 35.1 50 3.8 16.5 25 4.1 17.0 25 9.7 11.7 15 0.2 12.2 20			
Model	Code	Voltage	Voltage	Option	QTY	RLA	LRA	Motor FLA	QTY	FLA	Unit FLA		/ HACR		
	Н	208-3-60	197/254	A, B, C	1	23.2	164.0	4.0	1	1.10	28.3	34.1	50		
	Н	208-3-60	197/254	D, E	1	23.2	164.0	5.0	1	1.10	29.3	35.1	50		
ELV084	F	460-3-60	414/506	A, B, C	1	11.2	75.0	2.0	1	0.55	13.8	16.5	25		
ELV004	F	460-3-60	414/506	D, E	1	11.2	75.0	2.4	1	0.55	14.1	17.0	25		
	N	575-3-60	518/633	A, B, C	1	7.9	54.0	1.4	1	0.44	9.7				
	N	575-3-60	518/633	D, E	1	7.9	54.0	1.9	1	0.44	10.2				
	Н	208-3-60	197/254	A, B, C	1	25.0	164.0	5.0	1	1.96	32.0				
	Н	208-3-60	197/254	D, E	1	25.0	164.0	6.2	1	1.96	33.2	39.4	60		
ELV096	F	460-3-60	414/506	A, B, C	1	12.2	100.0	2.4	1	0.98	15.6	18.6	30		
2270000	F	460-3-60	414/506	D, E	1	12.2	100.0	3.1	1	0.98	16.3	19.3	30		
	N	575-3-60	518/633	A, B, C	1	9.0	78.0	1.9	1	0.78	11.7	13.9	20		
	N	575-3-60	518/633	D, E	1	9.0	78.0	2.3	1	0.78	12.1	14.3	20		
	Н	208-3-60	197/254	A, B, C	1	30.1	225.0	6.2	1	1.96	38.3	45.8	70		
	Н	208-3-60	197/254	D, E	1	30.1	225.0	9.2	1	1.96	41.3	48.8	70		
ELV120	F	460-3-60	414/506	A, B, C	1	16.7	114.0	3.1	1	0.98	20.8	25.0	40		
ELV120	F	460-3-60	414/506	D, E	1	16.7	114.0	4.3	1	0.98	22.0	26.2	40		
	N	575-3-60	518/633	A, B, C	1	12.2	80.0	2.3	1	0.78	15.3	18.3	30		
	N	575-3-60	518/633	E	1	12.2	80.0	3.4	1	0.78	16.4	19.4	30		
	Н	208-3-60	197/254	A, B, C	1	48.1	245.0	9.2	1	1.96	59.3	71.3	110		
	Н	208-3-60	197/254	D, E	1	48.1	245.0	14.1	1	1.96	64.2	76.2	110		
	F	460-3-60	414/506	A, B, C	1	18.6	125.0	4.3	1	0.98	23.9	28.5	45		
ELV150	F	460-3-60	414/506	D, E	1	18.6	125.0	7.0	1	0.98	26.6	31.2	45		
	N	575-3-60	518/633	A, B, C	1	14.7	100.0	3.4	1	0.78	18.9	22.6	35		
	N	575-3-60	518/633	D, E	1	14.7	100.0	5.2	1	0.78	20.7	24.4	35		
	Н	208-3-60	197/254	A, B, C	2	23.2	164.0	6.2	2	1.10	54.8	60.6	80		
	H	208-3-60	197/254	D, E	2	23.2	164.0	9.2	2	1.10	57.8	63.6	80		
	F	460-3-60	414/506	A, B, C	2	11.2	75.0	3.1	2	0.55	26.6	29.4	40		
ELV168	F	460-3-60	414/506	D, E	2	11.2	75.0	4.3	2	0.55	27.8	30.6	40		
	N	575-3-60	518/633	A, B, C	2	7.9	54.0	2.3	2	0.44	19.0	21.0	25		
	N	575-3-60	518/633	D, E	2	7.9	54.0	3.4	2	0.44	20.1	22.1	25		
	Н	208-3-60	197/254	A, B, C	2	25.0	164.0	9.2	2	1.96	63.1	69.4	90		
	Н	208-3-60	197/254	D, E	2	25.0	164.0	14.1	2	1.96	68.0	74.3	90		
	F	460-3-60	414/506	A, B, C	2	12.2	100.0	4.3	2	0.98	30.7	33.7	45		
ELV192	F	460-3-60	414/506	D, E	2	12.2	100.0	7.0	2	0.98	33.4	36.4	45		
	N	575-3-60	518/633	A, B, C	2	9.0	78.0	3.4	2	0.78	23.0	25.2	30		
	N	575-3-60	518/633	D, E	2	9.0	78.0	5.2	2	0.78	23.0	27.0	35		
	H			,	2	30.1	225.0		2	1.96	78.2		110		
	H	208-3-60 208-3-60	197/254	A, B, C E	2	30.1	225.0	14.1 21.7	2	1.96	78.2 85.8	85.7 93.3			
			197/254										110		
ELV240	F	460-3-60	414/506	A, B, C	2	16.7	114.0	7.0	2	0.98	42.4	46.5	60		
	F	460-3-60	414/506	E	2	16.7	114.0	10.0	2	0.98	45.4	49.5	60		
	N	575-3-60	518/633	A, B, C	2	12.2	80.0	5.2	2	0.78	31.2	34.2	45		
	N	575-3-60	518/633	E	2	12.2	80.0	7.7	2	0.78	33.7	36.7	45		
	H	208-3-60	197/254	A, B, C	2	48.1	245.0	14.1	2	1.96	114.2	126.2	150		
	H	208-3-60	197/254	D, E	2	48.1	245.0	21.7	2	1.96	121.8	133.8	175		
ELV300	F	460-3-60	414/506	A, B, C	2	18.6	125.0	7.0	2	0.98	46.2	50.8	60		
	F	460-3-60	414/506	D, E	2	18.6	125.0	10.0	2	0.98	49.2	53.8	70		
	N	575-3-60	518/633	A, B, C	2	14.7	100.0	5.2	2	0.78	36.2	39.8	50		
	N	575-3-60	518/633	D, E	2	14.7	100.0	7.7	2	0.78	38.7	42.3	50		

Table 4C: ELV Electrical Data Standard with Internal Pump or Reheat

HACR circuit breaker in USA only All fuses Class RK-5

		Compressor Em						Emerge	Emergency Power Supply						
Model	Voltage Code	Voltage	Min/Max Voltage	Blower Option	QTY	RLA	LRA	QTY	Pump FLA	Total FLA	MCA	Max Fuse/ HACR	Fan Motor FLA	Fan MCA	Fan Max Fuse/ HACR
	Н	208-3-60	197/254	A, B, C	1	23.2	164.0	1	1.10	24.3	30.1	50	4.0	5.0	15
	Н	208-3-60	197/254	D, E	1	23.2	164.0	1	1.10	24.3	30.1	50	5.0	6.3	15
ELV084	F	460-3-60	414/506	A, B, C	1	11.2	75.0	1	0.55	11.8	14.6	25	2.0	2.5	15
LLV004	F	460-3-60	414/506	D, E	1	11.2	75.0	1	0.55	11.8	14.6	25	2.4	3.0	15
	N	575-3-60	518/633	A, B, C	1	7.9	54.0	1	0.44	8.3	10.3	15	1.4	1.8	15
	N	575-3-60	518/633	D, E	1	7.9	54.0	1	0.44	8.3	10.3	15	1.9	2.4	15
	Н	208-3-60	197/254	A, B, C	1	25.0	164.0	1	1.96	27.0	33.2	50	5.0	6.3	15
	н	208-3-60	197/254	D, E	1	25.0	164.0	1	1.96	27.0	33.2	50	6.2	7.8	15
FLV000	F	460-3-60	414/506	A, B, C	1	12.2	100.0	1	0.98	13.2	16.2	25	2.4	3.0	15
ELV096	F	460-3-60	414/506	D, E	1	12.2	100.0	1	0.98	13.2	16.2	25	3.1	3.9	15
	N	575-3-60	518/633	A, B, C	1	9.0	78.0	1	0.78	9.8	12.0	20	1.9	2.4	15
	N	575-3-60	518/633	D, E	1	9.0	78.0	1	0.78	9.8	12.0	20	2.3	2.9	15
	н	208-3-60	197/254	A, B, C	1	30.1	225.0	1	1.96	32.1	39.6	60	6.2	7.8	15
	Н	208-3-60	197/254	D, E	1	30.1	225.0	1	1.96	32.1	39.6	60	9.2	11.5	20
	F	460-3-60	414/506	A, B, C	1	16.7	114.0	1	0.98	17.7	21.9	35	3.1	3.9	15
ELV120	F	460-3-60	414/506	D, E	1	16.7	114.0	1	0.98	17.7	21.9	65	4.3	5.4	15
	N	575-3-60	518/633	A, B, C	1	12.2	80.0	1	0.78	13.0	16.0	25	2.3	2.9	15
	N	575-3-60	518/633	А, В, С Е	1	12.2	80.0	1	0.78	13.0	16.0	25	3.4	4.3	15
												-	-		-
	Н	208-3-60	197/254	A, B, C	1	48.1	245.0	1	1.96	50.1	62.1	110	9.2	11.5	20
	Н	208-3-60	197/254	D, E	1	48.1	245.0	1	1.96	50.1	62.1	110	14.1	17.6	30
ELV150	F	460-3-60	414/506	A, B, C	1	18.6	125.0	1	0.98	19.6	24.2	40	4.3	5.4	15
	F	460-3-60	414/506	D, E	1	18.6	125.0	1	0.98	19.6	24.2	40	7.0	8.8	15
	N	575-3-60	518/633	A, B, C	1	14.7	100.0	1	0.78	15.5	19.2	30	3.4	4.3	15
	N	575-3-60	518/633	D, E	1	14.7	100.0	1	0.78	15.5	19.2	30	5.2	6.5	15
	Н	208-3-60	197/254	A, B, C	2	23.2	164.0	2	1.10	48.6	54.4	70	6.2	7.8	15
	Н	208-3-60	197/254	D, E	2	23.2	164.0	2	1.10	48.6	54.4	70	9.2	11.5	20
ELV168	F	460-3-60	414/506	A, B, C	2	11.2	75.0	2	0.55	23.5	26.3	35	3.1	3.9	15
LLVIUO	F	460-3-60	414/506	D, E	2	11.2	75.0	2	0.55	23.5	26.3	35	4.3	5.4	15
	N	575-3-60	518/633	A, B, C	2	7.9	54.0	2	0.44	16.7	18.7	25	2.3	2.9	15
	N	575-3-60	518/633	D, E	2	7.9	54.0	2	0.44	16.7	18.7	25	3.4	4.3	15
	Н	208-3-60	197/254	A, B, C	2	25.0	164.0	2	1.96	53.9	60.2	80	9.2	11.5	20
	Н	208-3-60	197/254	D, E	2	25.0	164.0	2	1.96	53.9	60.2	80	14.1	17.6	30
	F	460-3-60	414/506	A, B, C	2	12.2	100.0	2	0.98	26.4	29.4	40	4.3	5.4	15
ELV192	F	460-3-60	414/506	D, E	2	12.2	100.0	2	0.98	26.4	29.4	40	7.0	8.8	15
	N	575-3-60	518/633	A, B, C	2	9.0	78.0	2	0.78	19.6	21.8	30	3.4	4.3	15
	N	575-3-60	518/633	D, E	2	9.0	78.0	2	0.78	19.6	21.8	30	5.2	6.5	15
	Н	208-3-60	197/254	A, B, C	2	30.1	225.0	2	1.96	64.1	71.6	100	14.1	17.6	30
	н	208-3-60	197/254	E E	2	30.1	225.0	2	1.96	64.1	71.6	100	21.7	27.1	45
	F	460-3-60	414/506	A, B, C	2	16.7	114.0	2	0.98	35.4	39.5	50	7.0	8.8	15
ELV240	F	460-3-60	414/506	E E	2	16.7	114.0	2	0.98	35.4	39.5	50	10.0	12.5	20
	N	575-3-60	518/633	A, B, C	2	12.2	80.0	2	0.38	26.0	29.0	40	5.2	6.5	15
	N	575-3-60	518/633	E	2	12.2	80.0	2	0.78	26.0	29.0	40	7.7	9.6	15
	н	208-3-60	197/254	A, B, C	2	48.1	245.0	2	1.96	100.1	112.1	150	14.1	17.6	30
	H	208-3-60	197/254	D, E	2	48.1	245.0	2	1.96	100.1	112.1	150	21.7	27.1	45
ELV300	F	460-3-60	414/506	A, B, C	2	18.6	125.0	2	0.98	39.2	43.8	60	7.0	8.8	15
	F	460-3-60	414/506	D, E	2	18.6	125.0	2	0.98	39.2	43.8	60	10.0	12.5	20
	N	575-3-60	518/633	A, B, C	2	14.7	100.0	2	0.78	31.0	34.6	45	5.2	6.5	15
	N	575-3-60	518/633	D, E	2	14.7	100.0	2	0.78	31.0	34.6	45	7.7	9.6	15

Table 4D: ELV Electrical Data Dual Point Power with Pump or Reheat

HACR circuit breaker in USA only All fuses Class RK-5

Electrical - Power Wiring

🛦 WARNING! 🛦

WARNING! To avoid possible injury or death due to electrical shock, open the power supply disconnect switch and secure it in an open position during installation.

CAUTION! Use only copper conductors for field installed electrical wiring. Unit terminals are not designed to accept other types of conductors.

WARNING! A

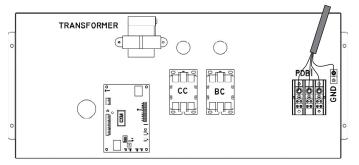
WARNING! Disconnect electrical power source to prevent injury or death from electrical shock.

General Line Voltage Wiring - Be sure the available power is the same voltage and phase as that shown on the unit serial plate. Line and low voltage wiring must be done in accordance with local codes or the National Electric Code, whichever is applicable.

ELV Power Connection - Line voltage connection is made by connecting the incoming line voltage wires to the power block as shown in Figure 8. Consult Table 4a and 4b for correct fuse size.

208 Volt Operation - All 208-230 Volt units are factory wired for 208 Volt. The transformers may be switched to 230V operation as illustrated on the wiring diagram by switching the Red (208V) and the Orange (230V) at the contactor terminal L2.

All field installed wiring, including electrical ground, must comply with the National Electrical Code as well as all applicable local codes.


Refer to the unit wiring diagrams for fuse sizes and a schematic of the field connections which must be made by the installing (or electrical) contractor.

Consult the unit wiring diagram located on the inside of the compressor access panel to ensure proper electrical hookup.

All final electrical connections must be made with a length of flexible conduit to minimize vibration and sound transmission to the building.

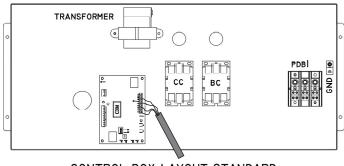
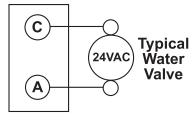

Thermostat Installation - The thermostat should be located on an interior wall in a larger room away from supply duct drafts. Do NOT locate the thermostat in areas subject to sunlight, drafts or on external walls. The wire access hole behind the thermostat may in certain cases need to be sealed to prevent erroneous temperature measurement. Position the thermostat backplate against the wall so that it appears level and so the thermostat wires protrude through the middle of the backplate. Mark the position of the backplate mounting holes and drill holes with a 3/16" bit. Install supplied anchors and secure plate to the wall. Thermostat wire must be 18 AWG wire. Wire the appropriate thermostat as shown in Figure 13 to the low voltage terminal strip in the CXM/DXM Control as shown in Figure 9 using 18 AWG thermostat wire of minimum length.

Figure 8: Typical ELV Series Line Voltage Field Wiring

CONTROL BOX LAYOUT STANDARD

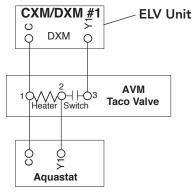
Figure 9: Low Voltage Field Wiring (CXM show) NOTE: For DXM, Y2 wiring at DXM1


CONTROL BOX LAYOUT STANDARD

Electrical - Low Voltage

Low Water Temperature Cutout - LT1 - The CXM/ DXM control allows the field selection of source fluid low temperature cutout points. The factory setting of LT1 is set for water (30°F [-1.1°C]). In cold temperature applications jumper JW3 (LT1- antifreeze 10°F [-12.2°C]) should be clipped as shown in Figure 10 to change the setting to 10°F [-12.2°C], a more suitable temperature when using antifreezes. It should be noted that the extended range option should be specified to operate the ELV Series at entering water temperatures below 60°F [15°C].

Accessory Connections - A terminal paralleling the compressor contactor coil has been provided on the CXM/DXM control of the ELV line. "A" has been provided to control accessory devices, such as water valves, electronic air cleaners, humidifiers, etc. Note: This terminal should be used only with 24 Volt signals and not line voltage signals. This signal operates with the compressor contactor. See Figure 11 or the wiring schematic for details.

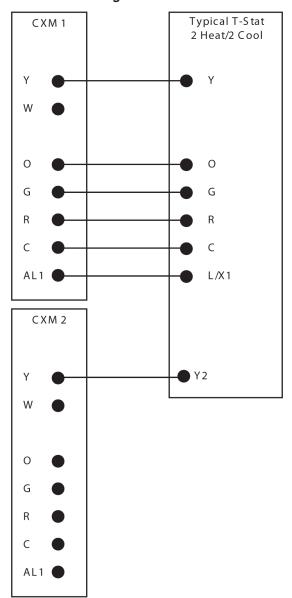


Water Solenoid Valves - When using external solenoid valves on ground water installations, a slow closing valve may be desired. Figure 11 illustrates a typical slow closing water control valve wiring which will limit wasted water during a lockout condition. A slow closing valve may be required to prevent water hammer. When using an AVM -Taco Slow Closing valve on ELV Series equipment Figure 12 wiring should be utilized. The valve takes approximately 60 seconds to open (very little water will flow before 45 seconds) and it activates the compressor only after the valve is completely opened (by closing its end switch). Only relay or triac based electronic thermostats should be used with the AVM valve. When wired as shown, the valve will operate properly with the following notations:

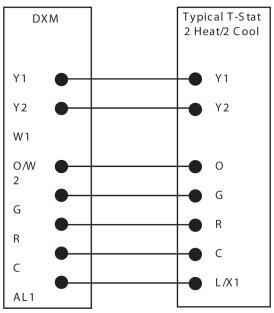
1-The valve will remain open during a unit lockout.

2-The valve will draw approximately 25-35 VA through the "Y" signal of the thermostat. Note: This can overheat the anticipators of electromechanical thermostats. Therefore only relay or triac based thermostats should be used.

Figure 12: Well Water AVM Valve Wiring

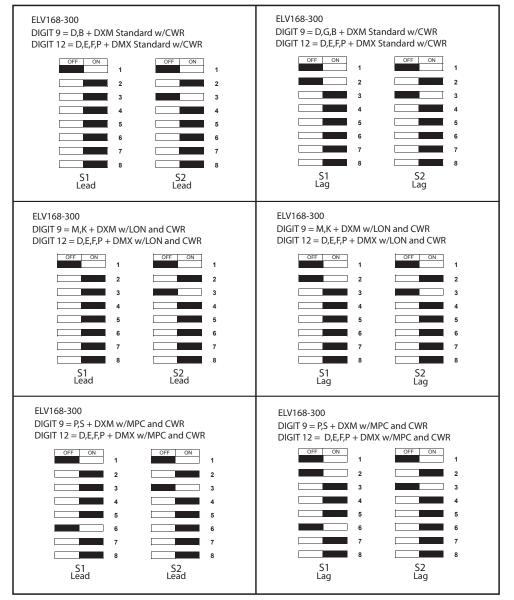

CXM/DXM, LonWorks or MPC Control Operation


Note: See CXM/DXM AOM or Lon Controller AOM and MPC AOM included with any unit utilizing the Lon or MPC Controller Option.

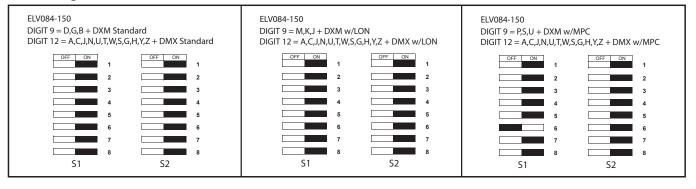

ELECTRICAL - THERMOSTAT

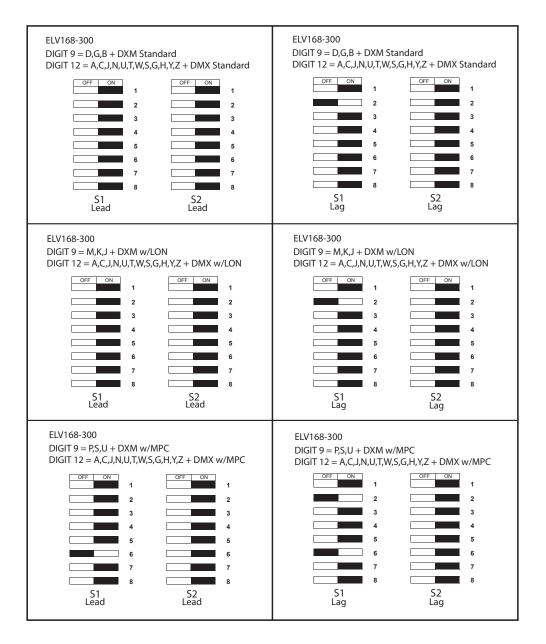
Typical Thermostat Selection and Wiring - Practically any multi-stage contact type thermostat will work with the ELV Series. Figure 13a and 13b show typical thermostat wiring. **Thermostats with Triac outputs are not compatible with CXM boards.**

Figure 13a: Typical Manual Changeover 2 heat/ 2 cool thermostat wiring

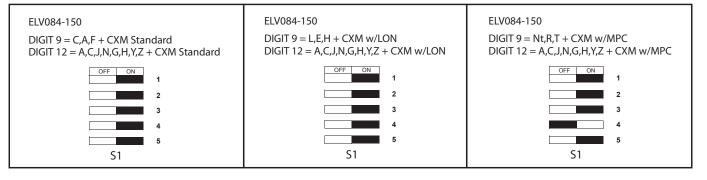

NOTE: For units with two (2) DXM boards all thermostat connections will be made to the "Master" DXM board. DO NOT connect thermostat wiring to the "Slave" DXM board.

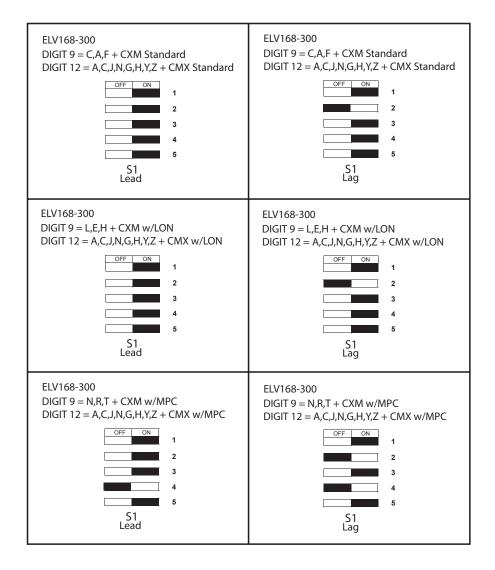
ELV Series Wiring Diagram Matrix

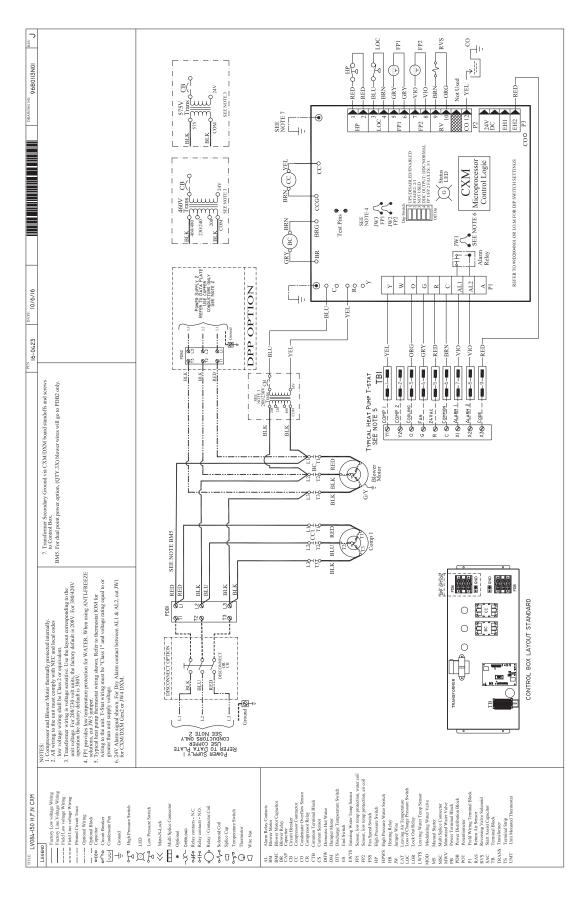

Model	Wiring Diagram Part Number	Electrical	Control	Agency	
ELV084-150	96B0113N01		CXM		
ELV064-150	96B0113N02		DXM		
ELV084-150 with Reheat	96B0113N03		DXM		
ELV168-300	96B0113N07		CXM		
	96B0113N08	208-230/60/3, 460/60/3,	DXM	ETL	
ELV186-300 with Reheat	96B0128N02	575/60/3	DXM		
	96B0149N01		CXM & LON		
ELV - All Auxillary Diagrams	96B0149N02		DXM & LON		
	96B0149N03		CXM & MPC		
	96B0149N04		DXM & MPC		

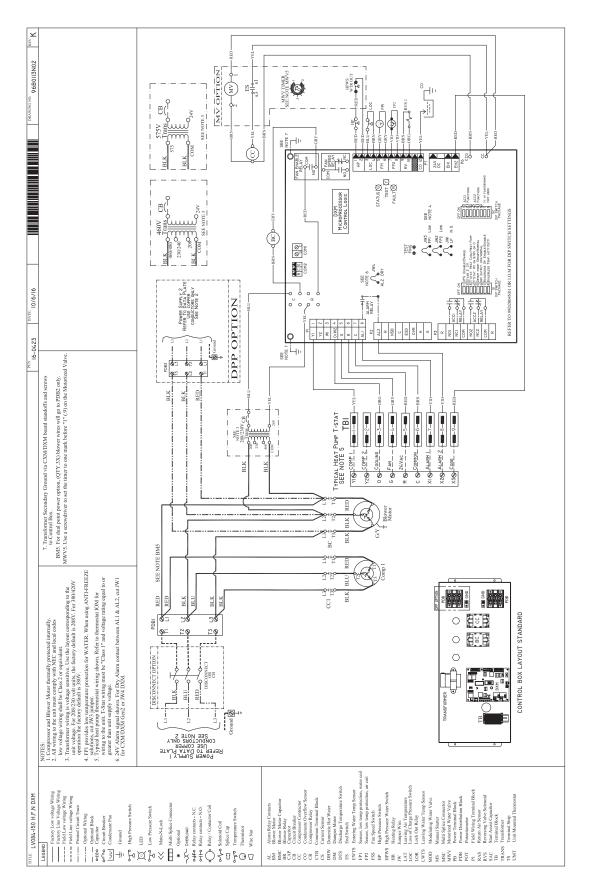

Please contact our Technical Service Department at 618-664-5860 for wiring diagram information.

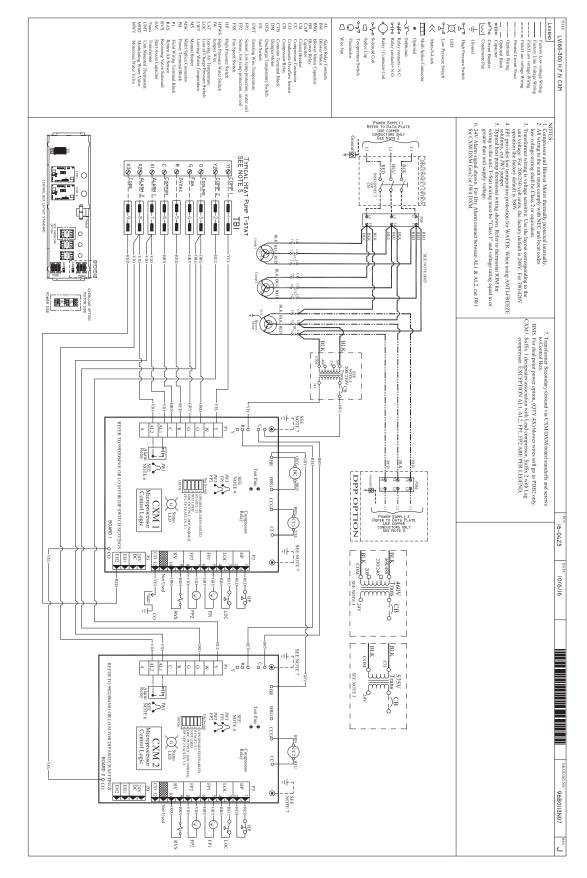
DIP Setting Table: DMX with Reheat (CWR)

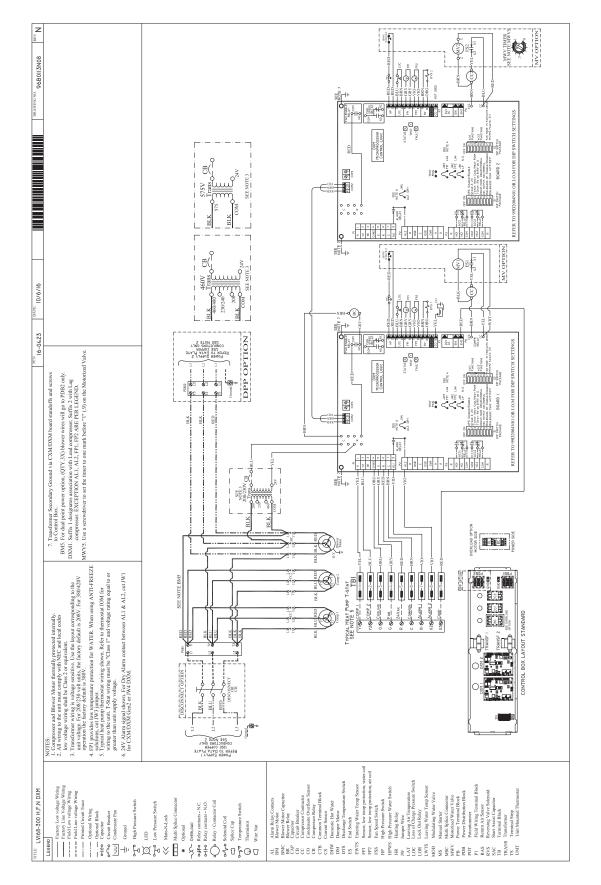



DIP Setting Tables: DMX




DIP Setting Tables: CXM


ELV084-150 H, F, N with CXM Schematic


ELV084-150 H, F, N with DXM Schematic

ELV168-300 H, F, N with CXM Schematic

29

ELV168-300 H, F, N with DXM Schematic

Reheat Sequence of Operation

Reheat Sequence of Operation - A heat pump equipped with Reheat can operate in three modes; cooling, cooling with reheat (dehumidification), and heating. The cooling/heating modes are like any other WSHP. The reversing valve ("O" signal) is energized in cooling, along with the compressor contactor(s) and blower relay. In the heating mode the reversing valve is de-energized. Almost any thermostat will activate the heat pump in heating or cooling modes. The DXM microprocessor board, which is required with the Reheat option, will accept either heat pump (Y,O) thermostats or non-heat pump (Y,W) thermostats. The reheat mode requires either a separate humidistat/dehumidistat or a thermostat that has an integrated dehumidification function for activation. The DXM board is configured to work with either a humidistat or dehumidistat input to terminal "H". Upon receiving an "H" input, the DXM board will activate the cooling mode and engage reheat. Table 4 shows the relationship between thermostat input signals and unit operation. There are four operational inputs for single stage units and six operational inputs for dual stage units:

-Fan Only -1st Stage Cooling -2nd Stage Cooling -1st Stage Heating -2nd Stage Heating -Reheat Mode

- Fan Only: A (G) call from the thermostat to the (G) terminal of the DXM control board will bring the unit on in fan only mode.
- 1st Stage Cooling: A simultaneous call from (G), (Y1), and (O) to the (G), (Y1), (O/W2) terminals of the DXM control board will bring the unit on in 1st Stage Cooling.
- 2nd Stage Cooling: A simultaneous call from (G), (Y1), (Y2), and (O) to the (G), (Y1), (Y2), and (O/W2) terminals of the DXM control board will bring the unit on in 2nd Stage Cooling. When the call is satisfied at the thermostat the unit will continue to run in 1st Stage Cooling until the 1st Stage Cooling call is removed or satisfied, shutting down the unit. **NOTE: Not all units have two-stage cooling functionality.**
- 1st Stage Heating: A simultaneous call from (G) and (Y1) to the (G) and (Y1) terminals of the DXM control board will bring the unit on in 1st Stage Heating.
- 2nd Stage Heating: A simultaneous call from (G), (Y1), and (Y2) to the (G), (Y1), and (Y2) terminals of the DXM control board will bring the unit on in 2nd Stage Heating. When the call is satisfied at the thermostat the unit will continue to run in 1st Stage Heating until the call is removed or satisfied, shutting down the unit. **NOTE: Not all units have two-stage heating** functionality (e.g. ELV084-150 units).

Table 2: Humidistat/Dehumidistat Logic and DXM (2.1, 2.2, 2.3) DIP Settings

Sensor	2.1	2.2	2.3	Logic	Reheat (ON) - H	Reheat (OFF) - H
Humidistat	OFF	OFF	OFF	Reverse	0 VAC	24 VAC
Dehumidistat	OFF	ON	OFF	Standard	24 VAC	0 VAC

Table 3: Reheat Operating Modes

Mode			Input			Output				
Mode	0	G	Y1	Y23	н	0	G	Y1	Y2 ³	Reheat
No Demand	ON/OFF	OFF	OFF	OFF	OFF	ON/OFF	OFF	OFF	OFF	OFF
Fan Only	ON/OFF	ON	OFF	OFF	OFF	ON/OFF	ON	OFF	OFF	OFF
Cooling 1st Stage	ON	ON	ON	OFF	OFF	ON	ON	ON	OFF	OFF
Cooling 2nd Stage	ON	ON	ON	ON	OFF	ON	ON	ON	ON	OFF
Cooling & Dehumidistat ¹	ON	ON	ON	ON/OFF	ON	ON	ON	ON	ON/OFF	OFF
Dehumidistat Only	ON/OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON	ON
Heating 1st Stage	OFF	ON	ON	OFF	OFF	OFF	ON	ON	OFF	OFF
Heating 2nd Stage	OFF	ON	ON	ON	OFF	OFF	ON	ON	ON	OFF
Heating & Dehumidistat ²	OFF	ON	ON	ON/OFF	ON	OFF	ON	ON	ON/OFF	OFF

¹Cooling input takes priority over dehumidify input.

²DXM is programmed to ignore the H demand when the unit is in heating mode.

³N/A for single stage units; Full load operation for dual capacity units.

⁴ON/OFF = Either ON or OFF.

Reheat Sequence of Operation

- Reheat Mode: A call from the Humidistat/Dehumidistat to the (H) terminal of the DXM control board will bring the unit on in Reheat Mode if there is no call for cooling at the thermostat. When the Humidistat/ Dehumidification call is removed or satisfied the unit will shut down. NOTE: Cooling always overrides Reheat Mode. In the Cooling mode, the unit cools and dehumidifies. If the cooling thermostat is satisfied but there is still a call for dehumidification, the unit will continue to operate in Reheat Mode.
- Note: Care must be taken when using a humidistat to operate Reheat. When the DIP switch on the DXM controller is set for 'humidistat' it reverses the control logic so that an "open" control circuit initiates a Reheat run cycle. If a humidistat is not connected, or if a manual switch on the humidistat is set to "off", Reheat will see the open circuit and call for dehumidification.

Reheat Component Functions

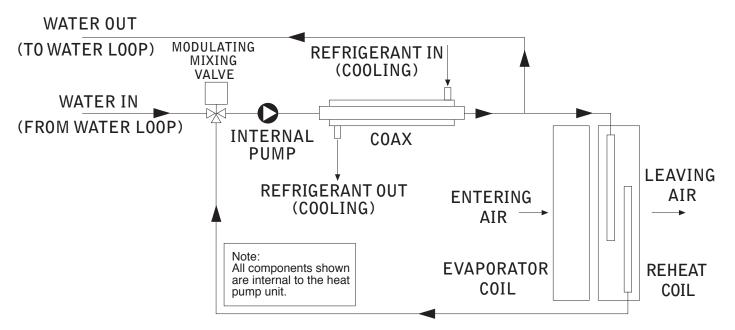
The Reheat option consists of the following components:

- Motorized Valve/Proportional Controller
- Supply Air Sensor
- Loop Pump
- Hydronic Coil
- Low Air Temperature Switch

The Proportional Controller operates on 24 VAC power supply and automatically adjusts the water valve based upon the Supply Air Sensor. The Supply Air Sensor senses supply air temperature at the blower inlet providing the input signal necessary for the proportional control to drive the motorized valve during the reheat mode of operation. The Motorized Valve is a proportional actuator/three-way valve combination used to divert the condenser water from the coax to the hydronic reheat coil during the reheat mode of operation. The proportional controller signals the motorized valve based on the supply air temperature of the supply air sensor.

The Loop Pump circulates condenser water through the hydronic reheat coil during the reheat mode of operation. In this application, the loop pump is only energized during the reheat mode of operation. The Hydronic Coil is utilized during the reheat mode of operation to reheat the air to the setpoint of the proportional controller. Condenser water is diverted by the motorized valve and pumped through the hydronic coil by the loop pump in proportion to the control setpoint. The amount of reheating is dependent on the setpoint and how far from setpoint the supply air temperature is. The factory setpoint is 72°F [22°C], generally considered "neutral" air.

Reheat Application Considerations


The reheat coil adds a small amount of resistance to the air stream. In some cases the high static option may be required for applications with higher static ductwork. Consult the submittal data or the Installation/Operation/ Maintenance (I.O.M.) manual for the specific heat pump to review blower tables.

Unlike most hot gas reheat options, the Reheat option will operate over a wide range of EWTs. Special flow regulation (water regulating valve) is not required for low EWT conditions.

Unit minimum entering air temperature while in the dehumidification, cooling, or continuous fan modes is **65°F DB/55°F WB**. Operation below this minimum may result in nuisance faults.

Water-source heat pumps with Reheat should not be used as make-up air units. These applications should use equipment specifically designed for make-up air.

Reheat Schematic

CXM Controls

CXM Control - For detailed control information, see CXM Application, Operation and Maintenance (AOM) manual (part # 97B0003N12).

Field Selectable Inputs - Test mode: Test mode allows the service technician to check the operation of the control in a timely manner. At board, momentarily shorting the test terminals or externally, momentarily push test button (See Fig 10), the CXM control enters a 20 minute test mode period in which all time delays are sped up 15 times. Upon entering test mode, the status LED will flash a code representing the last fault. For diagnostic ease at the thermostat, the alarm relay will also cycle during test mode. The alarm relay will cycle on and off similar to the status LED to indicate a code representing the last fault, at the thermostat. Test mode can be exited by shorting the test terminals or holding button for 3 seconds.

Retry Mode: If the control is attempting a retry of a fault, the status LED will slow flash (slow flash = one flash every 2 seconds) to indicate the control is in the process of retrying.

Field Configuration Options - Note: In the following field configuration options, jumper wires should be clipped ONLY when power is removed from the CXM control.

<u>Water coil low temperature limit setting:</u> Jumper 3 (JW3-LT1 Low Temp) provides field selection of temperature limit setting for LT1 of 30°F or 10°F [-1°F or -12°C] (refrigerant temperature).

Not Clipped = $30^{\circ}F$ [-1°C]. Clipped = $10^{\circ}F$ [-12°C]. Air coil low temperature limit setting: Jumper 2 (JW2-LT2 Low Temp) provides field selection of temperature limit setting for LT2 of $30^{\circ}F$ or $10^{\circ}F$ [-1°F or -12°C] (refrigerant temperature). Note: This jumper should only be clipped under extenuating circumstances, as recommended by the factory.

Not Clipped = 30° F [- 1° C]. Clipped = 10° F [- 12° C]. <u>Alarm relay setting</u>: Jumper 1 (JW1-AL2 Dry) provides field selection of the alarm relay terminal AL2 to be jumpered to 24VAC or to be a dry contact (no connection). Not Clipped = AL2 connected to R. Clipped = AL2 dry contact (no connection).

DIP Switches - Note: In the following field configuration options, DIP switches should only be changed when power is removed from the CXM control.

<u>DIP switch 1:</u> Unit Performance Sentinel Disable -

provides field selection to disable the UPS feature. On = Enabled. Off = Disabled.

<u>DIP switch 2</u>: Stage 2 Selection - provides selection of whether compressor has an "on" delay. If set to stage 2, the compressor will have a 3 second delay before energizing. Also, if set for stage 2, the alarm relay will NOT cycle during test mode.

On = Stage 1. Off = Stage 2 <u>DIP switch 3:</u> Not Used.

<u>DIP switch 4</u>: DDC Output at EH2 - provides selection for DDC operation. If set to "DDC Output at EH2," the EH2 terminal will continuously output the last fault code of the controller. If set to "EH2 normal," EH2 will operate as standard electric heat output.

On = EH2 Normal. Off = DDC Output at EH2.

Note: Some CXM controls only have a 2 position DIP switch package. If this is the case, this option can be selected by clipping the jumper which is in position 4 of SW1.

Jumper not clipped = EH2 Normal. Jumper clipped = DDC Output at EH2.

<u>DIP switch 5:</u> Factory Setting - Normal position is "On." Do not change selection unless instructed to do so by the factory.

Description of Operation	LED	Alarm
Normal Mode	ON	Open
Normal Mode w/UPS Warning	ON	Cycle (Closed 5 seconds, Open 25 seconds)
CXM is non-functional	OFF	Open
Fault Retry	Slow Flash	Open
Lockout	Fast Flash	Closed
Over/Under Voltage Shutdown	Slow Flash	Open (Closed after 15 Minutes)
Test Mode - No Fault in Memory	Flashing Code 1	Cycling Code 1
Test Mode - HP Fault in Memory	Flashing Code 2	Cycling Code 2
Test Mode - LP Fault in Memory	Flashing Code 3	Cycling Code 3
Test Mode - LT1 Fault in Memory	Flashing Code 4	Cycling Code 4
Test Mode - LT2 Fault in Memory	Flashing Code 5	Cycling Code 5
Test Mode - CO Fault in Memory	Flashing Code 6	Cycling Code 6
Test Mode - Over/Under Shutdown in Memory	Flashing Code 7	Cycling Code 7
Test Mode - UPS in Memory	Flashing Code 8	Cycling Code 8
Test Mode - Swapped Thermistor	Flashing Code 9	Cycling Code 9

Table 6a: LED And Alarm Relay Operations

-Slow Flash = 1 flash every 2 seconds

-Fast Flash = 2 flashes every 1 second

-Flash code 2 = 2 quick flashes, 10 second pause, 2 quick flashes, 10 second pause, etc.

-On pulse 1/3 second; off pulse 1/3 second

CAUTION! Do not restart units without inspection and remedy of faulting condition. Equipment damage may occur.

DXM Controls

DXM Control - For detailed control information, see DXM AOM (part #97B0003N13), Lon controller AOM (part #97B0013N01) or MPC AOM (part # 97B0031N01).

Table 6b: DXM	LED And Alarr	n Relay Operations

Description of Operation	Status LED (green)	Test LED (yellow)	Fault LED (red)	Alarm Relay
Normal mode	On	-	Off	Open
Normal mode with UPS	On	-	Flashing Code 8	Cycle (closed 5 sec, open 25 sec)
DXM is non-functional	Off	Off	Off	Open
Fault Retry	Slow Flash	-	Flashing fault code	Open
Lockout	Fast Flash	-	Flashing fault code	Closed
Test Mode	-	On	-	-
Night Setback	Flashing Code 2	-	-	-
ESD	Flashing Code 3	-	-	-
Invalid T-stat Inputs	Flashing Code 4	-	-	-
HP Fault	Slow Flash	-	Flashing Code 2	Open
LP Fault	Slow Flash	-	Flashing Code 3	Open
LT1 Fault	Slow Flash	-	Flashing Code 4	Open
LT2 Fault	Slow Flash	-	Flashing Code 5	Open
CO Fault	Slow Flash	-	Flashing Code 6	Open
Over/Under Voltages	Slow Flash	-	Flashing Code 7	Open (closed after 15 minutes)

-Slow Flash = 1 flash every 2 seconds

-Fast Flash = 2 flashes every 1 second

-Flash code 2 = 2 quick flashes, 10 second pause, 2 quick flashes, 10 second pause, etc.

-On pulse 1/3 second; off pulse 1/3 second

Field Selectable Inputs - Test mode: Test mode allows the service technician to check the operation of the control in a timely manner. By momentarily shorting the test terminals, the DXM control enters a 20 minute test mode period in which all time delays are sped up 15 times. Upon entering test mode, the status LED will flash a code representing the last fault. For diagnostic ease at the thermostat, the alarm relay will also cycle during test mode. The alarm relay will cycle on and off similar to the status LED to indicate a code representing the last fault, at the thermostat. Test mode can be exited by shorting the test terminals for 3 seconds.

Retry mode: If the control is attempting a retry of a fault, the status LED will slow flash (slow flash = one flash every 2 seconds) to indicate the control is in the process of retrying.

Field Configuration Options - Note: In the following field configuration options, jumper wires should be clipped ONLY when power is removed from the DXM control.

Water coil low temperature limit setting: Jumper 3 (JW3-LT1 Low Temp) provides field selection of temperature limit setting for LT1 of 30°F or 10°F [-1°F or -12°C] (refrigerant temperature).

Not Clipped = $30^{\circ}F$ [-1°C]. Clipped = $10^{\circ}F$ [-12°C].

Air coil low temperature limit setting: Jumper 2 (JW2-LT2 Low Temp) provides field selection of temperature limit setting for LT2 of 30°F or 10°F [-1°F or -12°C] (refrigerant temperature). Note: This jumper should only be clipped under extenuating circumstances, as recommended by Enertech technical services.

Not Clipped = $30^{\circ}F$ [-1°C]. Clipped = $10^{\circ}F$ [-12°C].

Alarm relay setting: Jumper 4 (JW4-AL2 Dry) provides field selection of the alarm relay terminal AL2 to be jumpered to 24VAC or to be a dry contact (no connection). Not Clipped = AL2 connected to R.

Clipped = AL2 dry contact (no connection).

Low pressure normally open: Jumper 1 (JW1-LP norm open) provides field selection for low pressure input to be normally closed or normally open.

Not Clipped = LP normally closed. Clipped = LP normally open.

DIP Switches - Note: In the following field configuration options, DIP switches should only be changed when power is removed from the DXM control.

DIP Package #1 (S1) - DIP Package #1 has 8 switches and provides the following setup selections:
1.1 - Unit Performance Sentinel (UPS) disable: DIP Switch 1.1 provides field selection to disable the UPS feature. On = Enabled. Off = Disabled.

1.2 - Compressor relay staging operation: DIP 1.2 provides selection of compressor relay staging operation. The compressor relay can be selected to turn on with a stage 1 or stage 2 call from the thermostat. This is used with dual stage units (2 compressors where 2 DXM controls are being used) or with master/ slave applications. In master/slave applications, each compressor and fan will stage according to its appropriate DIP 1.2 setting. If set to stage 2, the compressor will have a 3 second on-delay before energizing during a Stage 2 demand. Also, if set for stage 2, the alarm relay will NOT cycle during test mode. On = Stage 1. Off = Stage 2.

DXM Controls

1.3 - Thermostat type (heat pump or heat/cool): DIP 1.3 provides selection of thermostat type. Heat pump or heat/cool thermostats can be selected. When in heat/cool mode, Y1 is the input call for cooling stage 1; Y2 is the input call for cooling stage 2; W1 is the input call for heating stage 1; and O/W2 is the input call for heating stage 2. In heat pump mode, Y1 is the input call for compressor stage 1; Y2 is the input call for compressor stage 1; Y2 is the input call for reversing valve (heating or cooling, depending upon DIP 1.4). On = Heat Pump. Off = Heat/Cool.

1.4 - Thermostat type (O/B): DIP 1.4 provides selection of thermostat type for reversing valve activation. Heat pump thermostats with "O" output (reversing valve energized for cooling) or "B" output (reversing valve energized for heating) can be selected with DIP 1.4.

On = HP stat with "O" output for cooling. Off = HP stat with "B" output for heating.

1.5 - Dehumidification mode: DIP 1.5 provides selection of normal or dehumidification fan mode. In dehumidification mode, the fan speed relay will remain off during cooling stage 2. In normal mode, the fan speed relay will turn on during cooling stage 2.

On = Normal fan mode. Off = Dehumidification mode. **1.6** - DDC output at EH2: DIP 1.6 provides selection for DDC operation. If set to "DDC Output at EH2," the EH2 terminal will continuously output the last fault code of the controller. If set to "EH2 normal," EH2 will operate as standard electric heat output.

On = EH2 Normal. Off = DDC Output at EH2.

1.7 - Boilerless operation: DIP 1.7 provides selection of boilerless operation. In boilerless mode, the compressor is only used for heating when LT1 is above the temperature specified by the setting of DIP 1.8. Below DIP 1.8 setting, the compressor is not used and the control goes into emergency heat mode, staging on EH1 and EH2 to provide heating.

On = normal. Off = Boilerless operation.

1.8 - Boilerless changeover temperature: DIP 1.8 provides selection of boilerless changeover temperature setpoint. Note that the LT1 thermistor is sensing refrigerant temperature between the coaxial heat exchanger and the expansion device (TXV). Therefore, the 50°F [10°C] setting is not 50°F [10°C] water, but approximately 60°F [16°C] EWT. On = 50°F [10°C]. Off = 40°F [16°C]. **DIP Package #2 (S2)** - DIP Package #2 has 8 switches and provides the following setup selections:

2.1 - Accessory1 relay personality: DIP 2.1 provides selection of ACC1 relay personality (relay operation/ characteristics). See table 5c for description of functionality.

2.2 - Accessory1 relay personality: DIP 2.2 provides selection of ACC 1 relay personality (relay operation/ characteristics). See table 5c for description of functionality.

2.3 - Accessory1 relay personality: DIP 2.3 provides selection of ACC 1 relay options. See table 5c for description of functionality.

2.4 - Accessory2 relay personality: DIP 2.4 provides selection of ACC 2 relay personality (relay operation/ characteristics). See table5c for description of functionality.

2.5 - Accessory2 relay personality: DIP 2.5 provides selection of ACC 2 relay personality (relay operation/ characteristics). See table 5c for description of functionality.

2.6 - Accessory2 relay personality: DIP 2.6 provides selection of ACC 2 relay options. See table 5c for description of functionality.

2.7 - Auto dehumidification fan mode or high fan mode: DIP 2.7 provides selection of auto dehumidification fan mode or high fan mode. In auto dehumidification mode, the fan speed relay will remain off during cooling stage 2 IF the H input is active. In high fan mode, the fan enable and fan speed relays will turn on when the H input is active.

On = Auto dehumidification mode. Off = High fan mode. **2.8** - Special factory selection: DIP 2.8 provides special factory selection. Normal position is "On". Do not change selection unless instructed to do so by the factory.

Table oc. Accessory Dir Switch Settings								
DIP 2.1	DIP 2.2	DIP 2.3	ACC1 Relay Option					
On	On	On	Cycle with fan					
Off	On	On	Digital NSB					
On	Off	On	Water Valve - slow opening					
On	On	Off	OAD					
Off	Off	Off	Reheat Option - Humidistat					
Off	On	Off	Reheat Option - Dehumidistat					
DIP 2.4	DIP 2.5	DIP 2.6	ACC2 Relay Option					
On	On	On	Cycle with compressor					
Off	On	On	Digital NSB					
On	Off	On	Water Valve - slow opening					
On	On	Off	OAD					

Table 6c: Accessory DIP Switch Settings

All other DIP combinations are invalid

Safety Features

Safety Features – CXM/DXM Control

The safety features below are provided to protect the compressor, heat exchangers, wiring, and other components from damage caused by operation outside of design conditions.

<u>Anti-short cycle protection:</u> The control features a 5 minute anti-short cycle protection for the compressor. **Note: The 5 minute anti-short cycle also occurs at power up.**

<u>Random start:</u> The control features a random start upon power up of 5-80 seconds.

<u>Fault Retry:</u> In Fault Retry mode, the Status LED begins slowly flashing to signal that the control is trying to recover from a fault input. The control will stage off the outputs and then "try again" to satisfy the thermostat input call. Once the thermostat input call is satisfied, the control will continue on as if no fault occurred. If 3 consecutive faults occur without satisfying the thermostat input call, the control will go into "lockout" mode. The last fault causing the lockout will be stored in memory and can be viewed at the "fault" LED (DXM board) or by going into test mode (CXM board). **Note: LT1/LT2 faults are factory set at only one try.**

Lockout: In lockout mode, the status LED will begin fast flashing. The compressor relay is turned off immediately. Lockout mode can be "soft" reset by turning off the thermostat (or satisfying the call). A "soft" reset keeps the fault in memory but resets the control. A "hard" reset (disconnecting power to the control) resets the control and erases fault memory.

Lockout with emergency heat: While in lockout mode, if W becomes active (CXM), emergency heat mode will occur. If DXM is configured for heat pump thermostat type (DIP 1.3), emergency heat will become active if O/ W2 is energized.

<u>High pressure switch:</u> When the high pressure switch opens due to high refrigerant pressures, the compressor relay is de-energized immediately since the high pressure switch is in series with the compressor contactor coil. The high pressure fault recognition is immediate (does not delay for 30 continuous seconds before de-energizing the compressor).

High pressure lockout code = 2

Example: 2 quick flashes, 10 sec pause, 2 quick flashes, 10 sec. pause, etc.

Low pressure switch: The low pressure switch must be open and remain open for 30 continuous seconds during "on" cycle to be recognized as a low pressure fault. If the low pressure switch is open for 30 seconds prior to compressor power up it will be considered a low pressure (loss of charge) fault. The low pressure switch input is bypassed for the initial 120 seconds of a compressor run cycle.

Low pressure lockout code = 3

<u>Water coil low temperature (LT1)</u>: The LT1 thermistor temperature must be below the selected low temperature limit setting for 30 continuous seconds during a compressor run cycle to be recognized as a LT1 fault. The LT1 input is bypassed for the initial 120 seconds of a compressor run cycle. LT1 is set at the factory for one try. Therefore, the control will go into lockout mode once the LT1 fault has occurred.

LT1 lockout code = 4

<u>Air coil low temperature (LT2):</u> The LT2 thermistor temperature must be below the selected low temperature limit setting for 30 continuous seconds during a compressor run cycle to be recognized as a LT2 fault. The LT2 input is bypassed for the initial 60 seconds of a compressor run cycle. LT2 is set at the factory for one try. Therefore, the control will go into lockout mode once the LT2 fault has occurred.

LT2 lockout code = 5

<u>Condensate overflow:</u> The condensate overflow sensor must sense overflow level for 30 continuous seconds to be recognized as a CO fault. Condensate overflow will be monitored at all times.

CO lockout code = 6

<u>Over/under voltage shutdown:</u> An over/under voltage condition exists when the control voltage is outside the range of 19VAC to 30VAC. Over/under voltage shut down is a self-resetting safety. If the voltage comes back within range for at least 0.5 seconds, normal operation is restored. This is not considered a fault or lockout. If the CXM/DXM is in over/under voltage shutdown for 15 minutes, the alarm relay will close.

Over/under voltage shut down code = 7

Safety Features

<u>Unit Performance Sentinel-UPS (patent pending)</u>: The UPS feature indicates when the heat pump is operating inefficiently. A UPS condition exists when:

- a. In heating mode with compressor energized, LT2 is greater than 125°F [52°C] for 30 continuous seconds, or:
- b. In cooling mode with compressor energized, LT1 is greater than 125°F [52°C] for 30 continuous seconds, or:
- c. In cooling mode with compressor energized, LT2 is less than 40°F [4.5°C] for 30 continuous seconds.

If a UPS condition occurs, the control will immediately go to UPS warning. The status LED will remain on as if the control is in normal mode. Outputs of the control, excluding LED and alarm relay, will NOT be affected by UPS. The UPS condition cannot occur during a compressor off cycle. During UPS warning, the alarm relay will cycle on and off. The cycle rate will be "on" for 5 seconds, "off" for 25 seconds, "on" for 5 seconds, "off" for 25 seconds, etc.

UPS warning code = 8

<u>Swapped LT1/LT2 thermistors:</u> During test mode, the control monitors to see if the LT1 and LT2 thermistors are in the appropriate places. If the control is in test mode, the control will lockout with code 9 after 30 seconds if: a. The compressor is on in the cooling mode and the LT1

- sensor is colder than the LT2 sensor, or:
- b. The compressor is on in the heating mode and the LT2 sensor is colder than the LT1 sensor.

Swapped LT1/LT2 thermistor code = 9.

ESD (DXM only): The ESD (Emergency Shut Down) mode can be enabled from an external common signal to terminal ESD to shut down the unit. The green status light will flash code 3 when the unit is in ESD mode. ESD mode = code 3 (green "status" LED)

Diagnostic Features

The LED on the CXM board advises the technician of the current status of the CXM control. The LED can display either the current CXM mode or the last fault in memory if in test mode. If there is no fault in memory, the LED will flash Code 1 (when in test mode).

The green status LED and red fault LED on the DXM board advise the technician of the current status of the DXM control. The status LED will indicate the current mode that the DXM control is in. The fault LED will ALWAYS flash a code representing the LAST fault in memory. If there is no fault in memory, the fault LED will flash Code 1. The yellow test LED will turn on when in test mode. **CAUTION: Do not restart units without inspection and remedy of faulting condition. Damage may occur.**

CXM/DXM Control Start-up Operation

The control will not operate until all inputs and safety controls are checked for normal conditions. The compressor will have a 5 minute anti-short cycle delay at power-up. The first time after power-up that there is a call for compressor, the compressor will follow a 5 to 80 second random start delay. After the random start delay and anti-short cycle delay, the compressor relay will be energized. On all subsequent compressor calls, the random start delay is omitted.

Blower Adjustment

▲ CAUTION! ▲

CAUTION! Always disconnect all power supply(s) to unit prior to making belt or sheave adjustments. Inadvertently starting of the motor can cause damage to the equipment and personal injury.

Airflow and External Static Pressure Selection Adjustment

The ELV Series is available with standard, low, and high static options. These options will substitute a different blower drive sheave for each static range. In addition certain static ranges (bold print in Tables 5a through 5k) may require the optional large fan motor. Please specify static range and motor horsepower when ordering. See model nomenclature.

Sheave Adjustment

The ELV Series is supplied with variable sheave drive on the fan motor to adjust for differing airflows at various ESP conditions. Select an airflow requirement on the left side of the table, then move horizontally to right under the required ESP. Note the sheave turns open, rpm and horsepower for that condition. Fully closed the sheave will produce the highest static capability (higher rpm). To adjust sheave position: loosen belt tension and remove belt, loosen set screw on variable sheave (on fan motor) and open sheave to desired position. Retighten set screw and replace belt and set belt tension as below.

Belt Tensioning

An overly loose belt will, upon motor start, produce a slippage 'squeel' and cause premature belt failure and or intermittent airflow. An overly tight belt can cause premature motor or blower bearing failure.

Sheave and Pulley Alignment - Verify belt is straight; misalignment will cause premature belt failure. Adjust sheave if needed.

Belt Tensioning Procedure - ELV

Blower motors for ELV models are slide base mounted. To adjust the belt tension:

- 1. Loosen the four (4) bolts that lock the base to the slide rails.
- 2. Insert a socket into the opening at the front of the base assembly.
- 3. Turn counter clock wise to tighten or clock wise to loosen the belt.
- 4. The belt should be tensioned using a tension gauge method such as the Browning Belt Tensioner to set proper belt tension (see next page).
- 5. After belt tension is set secure the (4) locking bolts.

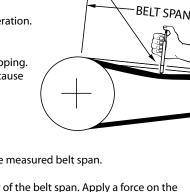
Notes:

- Motor position should not need adjustment.
- Motor sheave position is at mid position of each sheave. Thus the motor sheave is typically 2.5 turns open on a 5 turn sheave.

Special Note for AHRI Testing

- Note 1: All ELV084 ratings @ 2800CFM (1321 l/s) w/21GPM (1.33 l/s). Sheave setting for AHRI is 3.5 turns open.
- Note 2: All ELV096 ratings @ 3200CFM (1510 l/s) w/24GPM (1.51 l/s). Sheave setting for AHRI is 3.0 turns open.
- Note 3: All ELV120 ratings @ 4000CFM (1888 l/s) w/30GPM (1.89 l/s). Sheave setting for AHRI is 2.5 turns open.
- Note 4: Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature.
- Note 5: Heating capacities based upon 68°F DB, 59°F WB entering air temperature.
- Note 6: All ratings based upon operation at lower voltage of dual voltage rated models.

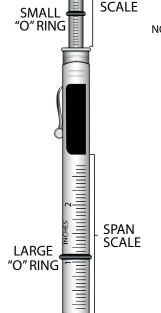
Tensioning V-Belt Drives


General Rules of Tensioning

- Ideal tension is the lowest tension at which the belt will not slip under peak load conditions.
- 2. Check tension frequently during the first 24-48 hours of operation.
- 3. Over tensioning shortens belt and bearing life.
- 4. Keep belts free from foreign material which may cause slip.
- 5. Make V-drive inspection on periodic basis. Tension when slipping. Never apply belt dressing as this will damage the belt and cause early failure.

Tension Measurement Procedure

- 1. Measure the belt span (see sketch).
- 2. Position bottom of the large "O" ring on the span scale at the measured belt span.
- 3. Set the small "O" ring on the deflection force scale to zero.
- 4. Place the tension checker squarely on one belt at the center of the belt span. Apply a force on the plunger and perpendicular to the belt span until the bottom of the large "O" ring is even with the top of the next belt or with the bottom of a straight edge laid across the sheaves.
- 5. Remove the tension checker and read the forct applied from the bottom of the small "O" ring on the deflection force scale.
- 6. Compare the force you have applied with the values given in the table below. The force should be between the minimum and maximum shown. The maximum value is shown for "New Belt" and new belts should be tensioned at this value to allow for expected tension loss. Used belts should be maintained at the minimum value as indicated in the table below.


IOTE: The rati	o of deflection to be	lt span is 1:64.		Belt Deflect	tion Force	
				pbelts and I Gripbands	Gripnotch Notched G	
Cross Section	Smallest Sheave Diameter Range	RPM Range	Used Belt	New Belt	Used Belt	New Belt
	7.6 - 9.1	1000 - 2500 2501 - 4000	16.458	24.464	18.237	27.133
			12.454	18.682	15.123	22.240
A, AX	9.6 - 12.2	1000 - 2500	20.016	30.246	22.240	32.915
		2501 - 4000	16.902	25.354	19.126	28.467
		1000 - 2500	24.019	35.584	25.354	41.811
	12.7 - 17.8	2501 - 4000	20.906	31.136	22.685	33.805
	8.6 - 10.7	860- 2500	-	-	21.795	32.026
	0.0 - 10.7	2501 - 4000	-	-	18.682	27.578
B, BX	11.2 - 14.2	860- 2500	23.574	35.139	36.029	46.704
,	11.2 - 17.2	2501 - 4000	20.016	29.802	31.581	40.477
	14.7 - 21.8	860- 2500	28.022	41.811	37.808	56.045
		2501 - 4000	26.688	39.587	32.470	48.483

DEFLECTION =

BELT SPAN

64

FORCE

Blower Sheave Information

	Configuration				Drive Package		
Model	Return/Supply	Component	А	В	с	D	E
084		Blower Sheave Motor Sheave Motor Belt	BK95 X 1" 1VP40 X 7/8" 1HP BX79	BK110 X 1" 1VP34 X 7/8" 1HP BX81	BK95 X 1" 1VP50 X 7/8" 1HP BX81	BK95 X 1" 1VP40 X 7/8" 1.5HP BX79	BK95 X 1" 1VP50 X 7/8" 1.5HP BX81
096	Back or Front/Top	Blower Sheave Motor Sheave Motor Belt	BK95 X 1" 1VP40 X 7/8" 1.5HP BX79	BK110 X 1" 1VP34 X 7/8" 1.5HP BX81	BK95 X 1" 1VP50 X 7/8" 1.5HP BX81	BK95 X 1" 1VP40 X 7/8" 2HP BX79	BK95 X 1" 1VP50 X 7/8" 2HP BX81
120	Back/Front Front/Back	Blower Sheave Motor Sheave Motor Belt	BK95 X 1" 1VP44 X 7/8" 2HP BX80	BK110 X 1" 1VP40 X 7/8" 2HP BX81	BK95 X 1" 1VP60 X 7/8" 2HP BX82	BK95 X 1" 1VP44 X 7/8" 3HP BX80	BK95 X 1" 1VP60 X 7/8" 3HP BX82
150		Blower Sheave Motor Sheave Motor Belt	BK95 X 1" 1VP50 X 7/8" 3HP BX81	BK110 X 1" 1VP50 X 7/8" 3HP BX83	BK95 X 1" 1VP62 X 7/8" 3HP BX83	BK95 X 1" 1VP50 X 1-1/8" 5HP BX77	BK95 X 1" 1VP65 X 1-1/8" 5HP H,F - BX79 N - BX81
168		Blower Sheave Motor Sheave Motor Belt	BK95H X 1-3/16" 1VP44 X 7/8" 2HP BX80	BK110H X 1-3/16" 1VP40 X 7/8" 2HP BX82	BK95H X 1-3/16" 1VP50 X 7/8" 2HP BX81	BK95H X 1-3/16" 1VP44 X 7/8" 3HP BX80	BK95H X 1-3/16" 1VP50 X 7/8" 3HP BX81
192		Blower Sheave Motor Sheave Motor Belt	BK95H X 1-3/16" 1VP44 X 7/8" 3HP BX80	BK110H X 1-3/16" 1VP40 X 7/8" 3HP BX82	BK95H X 1-3/16" 1VP50 X 7/8" 3HP BX81	BK95H X 1-3/16" 1VP44 X 1-1/8" 5HP BX76	BK95H X 1-3/16" 1VP50 X 1-1/8" 5HP BX77
240	Back or Front/Top Back/Front Front/Back	Blower Sheave Motor Sheave Motor Belt	BK90H X 1-3/16" 1VP44 X 1-1/8" 5HP H,F - BX78 N - BX77	BK110H X 1-3/16" 1VP44 X 1-1/8" 5HP BX80	BK95H X 1-3/16" 1VP60 X 1-1/8" 5HP H,F - BX80 N - BX78	N/A	BK95H X 1-3/16" 1VP60 X 1-3/8" 7.5HP H,F - BX79 N - BX78
300		Blower Sheave Motor Sheave Motor Belt	BK105H X 1-3/16" 1VP60 X 1-1/8" 5HP H,F - BX82 N - BX80	BK110H X 1-3/16" 1VP50 X 1-1/8" 5HP BX80	BK95H X 1-3/16" 1VP60 X 1-1/8" 5HP BX78	BK105H X 1-3/16" 1VP60 X 1-3/8" 7.5HP BX80	BK95H X 1-3/16" 1VP60 X 1-3/8" 7.5HP BX78

Table 4a: ELV Blower Sheave and Belt Information

Note 1: D-drive is not available because standard sheave is not available in 1-3/8".

Blower Performance

ELV 084 Blower Performance

All Data is Wet Coil

Airflow	ESP						Airflow	(cfm) at	External	Static F	Pressure	(in. wg)					
(SCFM)	LOF	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP			0.24	0.29	0.34	0.37	0.41	0.44	0.49	0.54	0.59	0.64	0.69	0.74	0.79	0.84
2100	Sheave/Mtr			В	В	В	A	A	A	A	A	A	С	С	С	С	С
2100	RPM			410	457	499	537	577	612	647	678	710	737	764	791	815	838
	Turns Open			5	3.5	4.5	6	5	4	3	2.5	1.5	6	5.5	4.5	4	3
	BHP			0.28	0.315	0.34	0.39	0.44	0.49	0.54	0.59	0.64	0.69	0.74	0.79	0.84	0.9
2200	Sheave/Mtr			В	В	В	A	A	A	A	A	A	С	С	С	С	С
2200	RPM			424	467	507	548	584	621	653	684	716	743	772	797	821	847
	Turns Open			4.5	3.5	4.5	5.5	5	4	3	2	1.5	6	5	4.5	3.5	3
	BHP	-		0.29	0.34	0.39	0.44	0.49	0.54	0.59	0.64	0.69	0.74	0.79	0.84	0.89	0.94
2300	Sheave/Mtr			B	B	B	A	A	A	A	A	A	C	C	C	C	C
	RPM			435 4.5	476	518 4	555 5.5	590 4.5	627 3.5	659 2.5	692 2	721	751 5.5	777 5	803 4	829 3.5	853 2.5
	Turns Open		0.00														
	BHP Sheave/Mtr		0.29 B	0.34 B	0.39 B	0.44 A	0.49 A	0.54 A	0.59 A	0.64 A	0.69 A	0.74 A	0.79 C	0.84 C	0.89 C	0.94 C	0.99 C
2400	RPM		403	446	485	527	563	600	633	665	697	726	756	783	811	835	858
	Turns Open		5	4	3	6	5.5	4.5	3.5	2.5	1.5	1	5.5	4.5	4	3	2.5
	BHP		0.31	0.34	0.39	0.44	0.49	0.54	0.59	0.64	0.74	0.79	0.84	0.89	0.94	0.99	1.04
	Sheave/Mtr		0.31 B	0.34 B	0.39 B	0.44 A	0.49 A	0.54 A	0.59 A	0.64 A	0.74 A	0.79 A	0.84 C	0.89 C	0.94 C	0.99 C	1.04 E
2500	RPM		411	452	495	532	567	604	636	670	700	729	759	786	813	838	864
	Turns Open		5	4	2.5	6	5.5	4	3.5	2.5	1.5	1	5.5	4.5	3.5	3	2.5
	BHP		0.34	0.43	0.48	0.53	0.58	0.63	0.68	0.73	0.78	0.83	0.88	0.93	1.03	1.08	1.13
	Sheave/Mtr		В	В	В	Α	A	A	A	A	A	A	С	С	E	E	E
2600	RPM		420	460	500	536	570	606	638	671	701	729	759	786	814	839	865
	Turns Open		4.5	3.5	2.5	6	5	4	3	2	1.5	1	5	4	4	3	2.5
	BHP		0.38	0.43	0.48	0.53	0.59	0.64	0.69	0.74	0.79	0.84	0.89	0.94	1.04	1.09	1.14
2700	Sheave/Mtr		В	В	В	A	A	A	A	A	A	A	С	С	E	E	E
2/00	RPM		423	463	504	539	576	609	641	674	703	734	762	788	816	841	867
	Turns Open		4.5	3.5	2	5.5	5	4	3	2	1.5	1	5	4	4	3	2.5
	BHP		0.39	0.44	0.49	0.54	0.64	0.69	0.74	0.79	0.84	0.89	0.94	1.04	1.09	1.12	1.22
2800	Sheave/Mtr		В	В	В	A	A	A	A	A	A	С	С	E	E	E	E
	RPM		431	474	510	545	581	613	647	677	706	737	764	793	818	843	869
	Turns Open		4.5 0.44	3 0.49	2 0.54	5.5 0.59	5 0.64	4	3 0.79	2	1.5 0.89	5.5 0.94	1	4.5	4	3 1.19	2.5 1.24
	BHP Sheave/Mtr		0.44 B	0.49 B	0.34 B	0.59 A	0.64 A	0.74 A	0.79 A	0.84 A	0.89 A	0.94 C	1.04 E	1.09 E	1.14 E	E	1.24 E
2900	RPM		440	481	517	551	586	618	651	681	710	740	767	795	821	845	872
	Turns Open		4	3	2	5.5	4.5	3.5	2.5	1.5	1	5.5	5.5	4.5	3.5	3	2
	BHP	0.43	0.49	0.54	0.59	0.64	0.69	0.74	0.84	0.89	0.94	1.04	1.09	1.14	1.19	1.24	1.29
	Sheave/Mtr	B	B	B	A	A	A	A	A	A	A	D	E	E	E	E	E
3000	RPM	412	455	492	526	563	595	628	658	687	718	745	774	800	826	852	876
	Turns Open	5	3.5	2.5	6	5.5	4.5	3.5	2.5	1.5	1.5	1	5	4.5	3.5	3	2
	BHP	0.44	0.53	0.59	0.64	0.69	0.74	0.84	0.89	0.94	0.99	1.04	1.14	1.19	1.24	1.34	1.39
3100	Sheave/Mtr	В	В	В	A	A	A	A	A	A	A	D	E	E	E	E	E
0.00	RPM	421	459	499	533	569	600	633	663	691	722	749	777	803	828	854	878
	Turns Open	4.5	3.5	2.5	6	5	4	3	2	1.5	1.5	1	5	4	3.5	2.5	2
	BHP	0.49	0.54	0.64	0.69	0.74	0.84	0.89	0.94	0.99	1.04	1.14	1.19	1.24	1.34	1.39	1.44
3200	Sheave/Mtr	B	B	B	A	A	A 614	A 644	A	A 703	D 730	E 750	E 795	E	E	E	E
	RPM	441	478	513 2	549 5.5	581 5	614 4	644 3	672 2	1.5	1.5	759 5.5	785 4.5	810 4	837 3	861 2.5	887 2
	Turns Open																-
	BHP Sheave/Mtr	0.54 B	0.64 B	0.69 A	0.74 A	0.83 A	0.89 A	0.94 A	0.99 A	1.04 D	1.14 D	1.23 E	1.29 E	1.34 E	1.44 E	1.49 E	
3300	RPM	456	495	529	561	595	625	656	685	712	741	767	795	820	844	870	
	Turns Open	3.5	2.5	6	5	4.5	3.5	2.5	2	1.5	1	5	4.5	3.5	3	2.5	
	BHP	0.63	0.69	0.74	0.79	0.84	0.94	0.99	1.04	1.14	1.19	1.24	1.34	1.44	1.49		
2400	Sheave/Mtr	В	В	A	A	A	A	A	D	1.5	D	E	E	E	E		
3400	RPM	471	506	539	574	604	633	664	692	721	747	773	800	825	851		
	Turns Open	3	2	5.5	5	4	3.5	2.5	2	1.5	1	5	4	3.5	2.5		
	BHP	0.64	0.74	0.79	0.84	0.94	0.99	1.04	1.14	1.23	1.29	1.34	1.44	1.49			
3500	Sheave/Mtr	В	A	A	A	A	A	D	D	D	E	E	E	E			
0000	RPM	486	520	555	586	615	647	674	704	730	756	784	808	835			
	Turns Open	2.5	6	5.5	4.5	4	3	2.5	1.5	1	5.5	4.5	4	3			

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

ELV 096 Blower Performance

All Data is Wet Coil

Airflow	FOR						Airflow	(cfm) at	External	Static P	ressure	(in. wg)					
(SCFM)	ESP	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP		0.29	0.34	0.39	0.44	0.49	0.54	0.59	0.64	0.69	0.74	0.79	0.84	0.89	0.94	0.99
2400	Sheave/Mtr		В	B	В	A	A	A	A	A	A	A	С	С	C	С	C
	RPM		403	446	485	527	563	600	633	665	697	726	756	783	811	835	858
	Turns Open		5	4	3	6	5.5	4.5	3.5	2.5	1.5	1	5.5	5	4	3.5	3
	BHP		0.31	0.34	0.39	0.44	0.49	0.54	0.59	0.64	0.74	0.79	0.84	0.89	0.94	0.99	1.04
2500	Sheave/Mtr		В	В	В	A	A	A	A	A	A	A	С	С	С	С	С
	RPM		411	452	495	532	567	604	636	670	700	729	759	786	813	838	864
	Turns Open		5	4	2.5	6	5.5	4	3.5	2.5	1.5	1	5.5	5	4	3	3
	BHP		0.34	0.43	0.48	0.53	0.58	0.63	0.68	0.73	0.78	0.83	0.88	0.93	1.03	1.08	1.13
2600	Sheave/Mtr		В	В	В	A	A	A	A	A	A	A	С	С	С	С	С
	RPM		420	460	500	536	570	606	638	671	701	729	759	786	814	839	865
	Turns Open		4.5	3.5	2.5	6	5	4	3	2	1.5	1	5	5	4	3	2.5
	BHP		0.38	0.43	0.48	0.53	0.59	0.64	0.69	0.74	0.79	0.84	0.89	0.94	1.04	1.09	1.14
2700	Sheave/Mtr		В	В	В	A	A	A	A	A	A	A	С	С	С	С	С
	RPM	-	423	463	504	539	576	609	641	674	703	734	762	788	816	841	867
	Turns Open		4.5	3.5	2	5.5	5	4	3	2	1.5	1	5	4.5	4	3	2.5
	BHP		0.39	0.44	0.49	0.54	0.64	0.69	0.74	0.79	0.84	0.89	0.94	1.04	1.09	1.12	1.22
2800	Sheave/Mtr		В	В	В	A	A	A	A	A	A	С	С	С	С	С	С
	RPM	-	431	474	510	545	581	613	647	677	706	737	764	793	818	843	869
	Turns Open		4.5	3	2	5.5	5	4	3	2	1.5	5.5	5	4.5	3.5	3	2.5
	BHP		0.44	0.49	0.54	0.59	0.64	0.74	0.79	0.84	0.89	0.94	1.04	1.09	1.14	1.19	1.24
2900	Sheave/Mtr		В	В	В	A	A	A	A	A	A		С	С	С	С	С
	RPM		440	481	517	551	586	618	651	681	710	740	767	795	821	845	872
	Turns Open		4	3	2	5.5	4.5	3.5	2.5	1.5	1	5.5	5	4.5	3.5	2.5	2.5
	BHP	0.43	0.49	0.54	0.59	0.64	0.69	0.74	0.84	0.89	0.94	1.04	1.09	1.14	1.19	1.24	1.29
3000	Sheave/Mtr	В	В	В	A	A	A	A	A	A	A	С	С	С	С	С	С
	RPM	412	455	492	526	563	595	628	658	687	718	745	774	800	826	852	876
	Turns Open	5	3.5	2.5	6	5.5	4.5	3.5	2.5	1.5	1.5	6	5	4	3.5	2.5	2
	BHP	0.44	0.53	0.59	0.64	0.69	0.74	0.84	0.89	0.94	0.99	1.04	1.14	1.19	1.24	1.34	1.39
3100	Sheave/Mtr	B	В	B	A	A	A	A	A	A	A	C	С	С	C	C	C
	RPM	421	459	499	533	569	600	633	663	691	722	749	777	803	828	854	878
	Turns Open	4.5	3.5	2.5	6	5	4	3	2	1.5	1.5	6	4.5	4	3	2.5	2
	BHP	0.49	0.54	0.64	0.69	0.74	0.84	0.89	0.94	0.99	1.04	1.14	1.19	1.24	1.34	1.39	1.44
3200	Sheave/Mtr	В	B	B	A	A	A	A	A	A	A	C	C	C	C	C	C
	RPM	441	478	513	549	581	614	644	672	703	730	759	785	810	837	861	887
	Turns Open BHP	4	3 0.64	2 0.69	5.5 0.74	5 0.83	4	3 0.94	2	1.5	1.5	5.5 1.23	4.5 1.29	4	3	2.5 1.49	2 1.54
	Sheave/Mtr	0.54 B	0.64 B	0.69 A	0.74 A	0.83 A	0.89 A	0.94 A	0.99 A	1.04 A	1.14 A	1.23 C	1.29 C	1.34 C	1.44 C	1.49 C	1.54 E
3300	RPM	456	495	529	561	595	625	656	685	712	741	767	795	820	844	870	893
	Turns Open	3.5	2.5	6	5	4.5	3.5	2.5	2	1.5	1	5	4.5	3.5	3	2	2
	BHP	0.63	0.69	0.74	0.79	0.84	0.94	0.99	1.04	1.14	1.19	1.24	1.34	1.44	1.49	1.54	1.64
	Sheave/Mtr	0.03 B	B	0.74 A	0.75 A	0.04 A	0.94 A	0.55 A	A	A	A	1.24 C	1.34 C	C	C	1.54 E	E
3400	RPM	471	506	539	574	604	633	664	692	721	747	773	800	825	851	875	898
	Turns Open	3	2	5.5	5	4	3.5	2.5	2	1.5	1	5	4	3.5	2.5	2.5	2
	BHP	0.64	0.74	0.79	0.84	0.94	0.99	1.04	1.14	1.23	1.29	1.34	1.44	1.49	1.54	1.64	1.74
	Sheave/Mtr	B	A	A	A	A	A	A	A	A .	C	C	C	C	E	E	E
3500	RPM	486	520	555	586	615	647	674	704	730	756	784	808	835	858	883	906
	Turns Open	2.5	6	5.5	4.5	4	3	2.5	1.5	1	5.5	4.5	4	3	2.5	2.5	1.5
	BHP	0.74	0.79	0.84	0.94	0.99	1.04	1.14	1.19	1.24	1.34	1.44	1.49	1.54	1.64	1.74	1.83
	Sheave/Mtr	B	0.75 A	0.84 A	0.34 A	0.55 A	A	A	A	A	C	C	C	E	E	E	E
3600	RPM	495	528	562	593	624	652	680	708	734	762	787	812	838	861	886	909
	Turns Open	2.5	6	5	4.5	3.5	3	2	1.5	1	5.5	4.5	4	3	2.5	2.5	1.5

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

For applications requiring higher static pressures, contact your local representative. Performance data does not include drive losses and is based on sea level conditions. Do not operate in black regions. All airflow in rated at lowest Voltage if unit is dual Voltage rated, i.e. 208V for 208-230V units.

Table Continued on Next Page

Airflow	ESP						Airflow	(cfm) at	External	Static P	ressure	(in. wg)					
(SCFM)	LOF	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP	0.79	0.84	0.93	0.99	1.04	1.14	1.19	1.24	1.34	1.44	1.49	1.54	1.64	1.74	1.79	1.84
3700	Sheave/Mtr	В	A	A	A	A	A	A	A	A	С	С	E	E	E	E	E
5700	RPM	506	541	572	605	633	661	690	716	744	769	793	820	843	868	891	913
	Turns Open	2	5.5	5	4	3.5	3	2	1.5	1	5	4.5	3.5	3	2.5	2	1.5
	BHP	0.84	0.89	0.94	1.04	1.13	1.19	1.24	1.34	1.43	1.49	1.54	1.64	1.73	1.79	1.84	1.94
3800	Sheave/Mtr	В	A	A	A	A	A	A	A	С	С	E	E	E	E	E	E
3800	RPM	515	549	580	611	640	667	696	721	749	773	798	823	847	872	894	918
	Turns Open	2	5.5	4.5	4	3.5	2.5	1.5	1.5	5.5	5	4	3.5	3	2.5	2	1
	BHP	0.89	0.94	1.04	1.09	1.14	1.24	1.34	1.39	1.44	1.54	1.64	1.69	1.74	1.84	1.94	
3900	Sheave/Mtr	A	A	Α	A	A	A	A	A	С	E	E	E	E	E	E	-
3900	RPM	525	556	586	617	645	674	701	726	753	778	804	827	850	875	897	
	Turns Open	6	5.5	4.5	4	3	2.5	1.5	1	5.5	5	4	3.5	2.5	2	2	
	BHP	0.94	1.04	1.09	1.14	1.24	1.34	1.44	1.49	1.54	1.64	1.74	1.79	1.84	1.94		
4000	Sheave/Mtr	A	A	A	A	A	A	A	A	E	E	E	E	E	E		
.500	RPM	539	569	601	629	659	685	711	738	763	789	812	835	860	882		
	Turns Open	5.5	5	4.5	3.5	3	2	1	1	5	4.5	3.5	3	2.5	2		

096 Table Continued from Previous Page

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

ELV 120 Blower Performance

All Data is Wet Coil

Airflow	FOR						Airflow	(cfm) at	External	Static F	Pressure	(in. wg)					
(SCFM)	ESP	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP			0.54	0.59	0.64	0.69	0.74	0.84	0.89	0.94	1.04	1.09	1.14	1.19	1.24	1.34
3000	Sheave/Mtr			В	В	В	В	A	A	A	A	A	A	A	A	С	С
0000	RPM			491	529	563	595	626	659	689	717	745	774	801	826	851	877
	Turns Open			5	4	3	2	6	5	4	3.5	3	2	1.5	1	6	5.5
	BHP		0.54	0.59	0.64	0.69	0.74	0.84	0.89	0.94	1.04	1.09	1.14	1.19	1.24	1.34	1.44
3100	Sheave/Mtr		В	В	В	В	A	A	A	A	A	A	A	A	С	С	С
	RPM		469	504	542	575	607	637	670	699	726	754	783	809	834	859	884
	Turns Open		5.5	5	3.5	2.5	6	5.5	4.5	4	3.5	2.5	2	1.5	6	6	5
	BHP		0.59	0.64	0.69	0.74	0.84	0.89	0.94	1.04	1.09	1.14	1.24	1.29	1.34	1.44	1.53
3200	Sheave/Mtr		В	В	В	В	A	A	A	A	A	A	A	A	С	С	С
	RPM		485	520	556	588	619	649	680	708	736	765	791	817	841	868	891
	Turns Open		5	4.5	3	2	6	5	4.5	3.5	3	2.5	1.5	1	6	5.5	5
	BHP	0.59	0.64	0.69	0.74	0.84	0.89	0.94	1.04	1.09	1.14	1.24	1.29	1.34	1.44	1.49	1.54
3300	Sheave/Mtr	В	В	В	В	В	A	A	A	A	A	A	A	A	С	С	С
	RPM	464	500	537	570	601	631	662	691	718	745	774	799	824	849	875	898
	Turns Open	6	5	4	2.5	2	5.5	5	4	3.5	2.5	2	1.5	1	5.5	5	4.5
	BHP	0.64	0.69	0.74	0.84	0.89	0.94	1.04	1.09	1.14	1.24	1.29	1.34	1.44	1.49	1.54	1.64
3400	Sheave/Mtr	B 400	B	B	B	A	A	A	A 701	A 700	A	A 700	A	C	C 057	C	C
	RPM	480	515	551	583	613	642	674	701	728	754	783	808	833	857	882	905
	Turns Open	5.5	4.5	3.5	2.5	6	5.5	4.5	3.5	3	2.5	2	1	6	5.5	5	4.5
	BHP	0.69	0.74	0.84	0.89	0.94	1.04	1.09	1.14	1.24	1.29	1.34	1.44	1.54	1.59	1.64	1.74
3500	Sheave/Mtr	B	В	В	В	A	A	A	A	A	A	A	A	С	С	C	С
	RPM	496	530	565	596	625	654	684	711	738	766	792	816	841	867	890	913
	Turns Open	5	4	3	2	6	5	4	3.5	3	2.5	1.5	1	6	5.5	5	4
	BHP	0.74	0.84	0.89	0.94	1.04	1.09	1.14	1.24	1.34	1.39	1.44	1.54	1.59	1.64	1.74	1.84
3600	Sheave/Mtr RPM	B	B	B	A	A	A	A 695	A 722	A	A 770	A	C	C	C 874	C	C 920
	Turns Open	511 4.5	544 3.5	578 2.5	608 6	637 5.5	668 4.5	4	3.5	748 2.5	776 2	800	825 6	849 6	5	897 4.5	920
	BHP	0.84	0.89	0.94	1.04	1.14	1.19	1.24	1.34	1.39	1.44	1.54	1.64	1.69	1.74	1.84	1.94
	Sheave/Mtr	0.84 B	0.89 B	0.94 B	A	A	A	1.24 A	A	A	A	A	1.04 C	1.09 C	C	1.64 C	1.94 C
3700	BPM	526	561	592	621	649	679	706	732	758	785	809	833	857	882	905	927
	Turns Open	4	3	2	6	5	4.5	3.5	3	2.5	1.5	1	6	5.5	5	4.5	4
	BHP	0.89	0.94	1.04	1.09	1.14	1.24	1.34	1.39	1.44	1.54	1.64	1.69	1.74	1.84	1.94	2.04
3800	Sheave/Mtr	В	В	В	A	A	A	A	A	А	A	A	С	С	С	С	E
3800	RPM	544	575	605	633	661	691	717	742	767	794	818	842	867	890	912	934
	Turns Open	3.5	2.5	1.5	5.5	5	4	3.5	2.5	2	1.5	1	6	5.5	4.5	4	3.5
	BHP	0.94	1.04	1.14	1.19	1.24	1.34	1.44	1.49	1.54	1.64	1.74	1.79	1.84	1.94	2.04	2.14
3900	Sheave/Mtr	В	В	A	A	A	A	A	A	Α	A	С	С	С	С	E	E
0000	RPM	555	589	618	646	676	702	728	753	779	803	827	850	875	898	920	941
	Turns Open	3	2	6	5	4.5	3.5	3	2.5	2	1	6	5.5	5	4.5	4	3.5
	BHP	1.04	1.09	1.14	1.24	1.34	1.44	1.49	1.54	1.64	1.74	1.79	1.84	1.94	2.04	2.14	2.24
4000	Sheave/Mtr	B	B	A	A	A	A	A	A	A	A	С	С	C	E	E	E
	RPM Turns Open	572 2.5	601 2	630 5.5	657 5	686 4	712 3.5	737	762 2	789 1.5	812	836 6	859 5.5	883 5	905 4.5	927 4	948 3.5
	BHP	1.14	2	1.24	5 1.34	4	1.49	1.54	2	1.5	1.84	1.89	5.5 1.94	2.04	4.5 2.14	2.24	2.34
	Sheave/Mtr	1.14 B	1.19 A	1.24 A	1.34 A	1.44 A	1.49 A	1.54 A	A	1.74 A	1.84 C	1.89 C	1.94 C	2.04 E	2.14 E	2.24 E	2.34 E
4100	RPM	589	617	645	672	700	726	751	775	801	824	847	872	894	915	937	960
	Turns Open	2	6	5	4.5	4	3	2.5	2	1	6	5.5	5	4.5	4	3.5	3
	BHP	1.24	1.29	1.34	1.44	1.54	1.59	1.64	1.74	1.84	2	2.04	2.09	2.14	2.24	2.34	2.44
4200	Sheave/Mtr	A	A	A	A	A	A	A	A	А	E	E	E	E	E	E	E
4200	RPM	605	633	660	689	714	739	763	790	813	836	858	882	904	925	946	969
	Turns Open	6	5.5	5	4	3.5	2.5	2.5	1.5	1	6	5.5	5.5	4.5	4	3.5	3
	BHP	1.29	1.34	1.44	1.54	1.64	1.69	1.74	1.84	2	2.04	2.14	2.24	2.29	2.34	2.44	2.54
4300	Sheave/Mtr	A	A	A	A	A	A	A	A	E	E	E	E	E	E	E	E
	RPM	621	649	675	703	728	752	776	802	827	847	869	893	914	935	956	979
	Turns Open	6	5	4.5	3.5	3	2.5	2	1	6	6	5.5	5	4.5	4	3	2.5
	BHP Sheave/Mtr	1.39	1.44	1.54	1.64	1.74	1.84	1.89	2 D	2.04	2.14	2.24	2.34	2.44 E	2.49	2.54	2.64 E
4400	Sheave/Mtr RPM	A 637	A 664	A 690	A 717	A 742	A 766	A 791	814	E 836	E 858	E 882	E 904	925	E 945	E 968	988
	Turns Open	5.5	4.5	4	3.5	2.5	2	1.5	1	6	5.5	5	4.5	925	3.5	300	2.5
	BHP	1.49	1.54	1.64	1.74	1.84	1.94	2.04	2.09	2.14	2.24	2.34	2.44	2.54	2.64	2.74	2.84
	Sheave/Mtr	1.49 A	1.54 A	1.64 A	1.74 A	1.84 A	1.94 A	2.04 D	2.09 D	2.14 E	2.24 E	2.34 E	2.44 E	2.54 E	2.64 E	2.74 E	2.84 E
4500	RPM	653	679	707	731	755	779	804	826	848	870	893	914	935	955	978	997
	Turns Open	5	4.5	3.5	3	2	1.5	1.5	1	6	5.5	5	4.5	4	3.5	2.5	2

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

120 Table Continued from Previous Page

All Data is Wet Coil

Airflow	FOR						Airflow	(cfm) at	External	Static P	ressure	(in. wg)					
(SCFM)	ESP	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP	1.59	1.64	1.74	1.84	1.94	2.04	2.14	2.24	2.34	2.39	2.44	2.54	2.64	2.74	2.84	2.94
4600	Sheave/Mtr	A	A	A	A	A	D	D	E	E	E	E	E	E	E	E	E
4000	RPM	668	694	721	745	768	791	816	838	860	883	904	925	945	967	987	1007
	Turns Open	4.5	4	3	2.5	2	1.5	1	6	5.5	5	4.5	4	3.5	3	2.5	2
	BHP	1.74	1.84	1.89	1.94	2.04	2.14	2.24	2.34	2.44	2.54	2.64	2.69	2.74	2.84	2.94	
4700	Sheave/Mtr	A	A	A	A	D	D	E	E	E	E	E	E	E	E	E	
4700	RPM	683	711	735	758	782	806	828	850	871	894	915	935	955	977	997	
	Turns Open	4	3.5	2.5	2	2	1	6	6	5.5	5	4.5	3.5	3.5	3	2	
	BHP	1.84	1.94	1.99	2.04	2.14	2.24	2.34	2.44	2.54	2.64	2.74	2.84	2.94			
4800	Sheave/Mtr	A	A	A	D	D	D	E	E	E	E	E	E	E			
4000	RPM	698	725	749	772	795	819	836	862	883	906	926	946	968			
	Turns Open	3.5	3	2.5	2	1.5	1	6	5.5	5	4.5	4	3.5	3			
	BHP	1.94	2.04	2.14	2.24	2.34	2.44	2.49	2.54	2.64	2.74	2.84	2.94				
4900	Sheave/Mtr	A	D	D	D	D	E	E	E	E	E	E	E				
4900	RPM	715	739	762	785	810	831	853	874	896	917	937	956				
	Turns Open	3	3	2.5	2	1	6	5.5	5.5	5	4	3.5	3				
	BHP	2.04	2.14	2.24	2.34	2.44	2.54	2.64	2.74	2.84	2.94						
5000	Sheave/Mtr	D	D	D	D	E	E	E	E	E	E						
5000	RPM	730	753	776	798	822	844	865	885	908	928						
	Turns Open	3	2.5	2	1.5	6	6	5.5	5	4.5	4						

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

ELV 150 Blower Performance

All Data is Wet Coil

Airflow	ESP						Airflow ((cfm) at I	External	Static P	ressure	(in. wg)					
(SCFM)	ESP	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP						1.04	1.14	1.24	1.29	1.34	1.44	1.54	1.64	1.74	1.84	1.94
3800	Sheave/Mtr						В	В	В	A	A	A	A	A	A	A	A
	RPM						659	688	718	746	774	802	829	855	879	905	931
	Turns Open						5.5	4.5	3.5	6	5	4.5	4	3	2.5	2	1
	BHP					1.04	1.14	1.19	1.24	1.34	1.44	1.54	1.64	1.74	1.84	1.94	2.03
3900	Sheave/Mtr					В	В	В	В	A	A	A	A	A	A	A	A
	RPM					639	669	702	729	757	785	811	838	862	887	913	938
	Turns Open					6	5	4	3	5.5	5	4	3.5	3	2	1.5	1
	BHP					1.14	1.19	1.24	1.34	1.44	1.54	1.64	1.69	1.74	1.84	1.94	2.04
4000	Sheave/Mtr					B	B	B	A	A	A	A	A	A	A	A	C
	RPM Turns Open					651 5.5	683 4.5	710 4	739 6	767 5.5	794 4.5	821 4	845 3.5	870 2.5	895 2	920 1.5	945 6
	BHP				1.09	1.14	1.24	1.34	1.44	1.54	1.64	1.69	1.74	1.84	1.94	2.04	2.14
	Sheave/Mtr				B	B	B	B	A	A	A	A	A	A	A	A	C
4100	RPM				631	661	692	722	750	778	804	831	854	879	904	928	951
	Turns Open				6	5.5	4.5	3.5	515	5	4.5	3.5	3	2.5	1.5	1	6
	BHP				1.14	1.24	1.34	1.44	1.54	1.59	1.64	1.74	1.84	1.94	2.04	2.14	2.24
	Sheave/Mtr				B	B	B	B	A	A	A	A	A	A	A	A	C
4200	RPM				640	673	703	733	761	788	812	838	863	888	912	934	958
	Turns Open				6	5	4	3	5.5	4.5	4	3.5	3	2	1.5	1	5.5
	BHP				1.24	1.34	1.44	1.54	1.59	1.64	1.74	1.84	1.94	2.04	2.14	2.24	2.34
4300	Sheave/Mtr				В	В	В	A	A	A	A	A	A	A	A	С	С
4300	RPM				653	685	715	744	771	796	822	847	872	896	919	942	966
	Turns Open				5.5	4.5	3.5	6	5	4.5	4	3	2.5	2	1	6	5.5
	BHP			1.24	1.34	1.44	1.54	1.59	1.64	1.74	1.84	1.94	2.04	2.14	2.24	2.34	2.44
4400	Sheave/Mtr			В	В	В	В	A	A	A	A	A	A	A	A	С	С
	RPM			633	666	697	726	755	782	806	832	857	881	904	927	950	973
	Turns Open			6	5	4	3	5.5	5	4	3.5	3	2.5	1.5	1	6	5.5
	BHP			1.3 B	1.4 B	1.5 B	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4 C	2.5	2.6 C
4500	Sheave/Mtr RPM			646	678	706	A 735	A 763	A 791	A 817	A 842	A 867	A 889	A 912	935	C 958	980
	Turns Open			5.5	4.5	4	6	5.5	4.5	4	3.5	2.5	2	1.5	6	6	5
	BHP			1.34	1.44	1.54	1.64	1.74	1.84	1.94	2.04	2.14	2.24	2.34	2.44	2.54	2.64
4600	Sheave/Mtr			В	В	В	A	A	A	A	A	Α	A	A	С	С	С
4600	RPM			656	687	715	744	772	799	825	850	872	896	919	942	963	987
	Turns Open			5.5	4.5	3.5	6	5	4.5	3.5	3	2.5	2	1	6	5.5	5
	BHP		1.34	1.44	1.54	1.64	1.74	1.84	1.94	2.04	2.14	2.24	2.34	2.44	2.54	2.64	2.74
4700	Sheave/Mtr RPM		B 637	B 666	B 697	B 727	A 755	A 783	A 809	A 835	A 858	A 882	A 905	A 928	C 951	C 973	C 994
	Turns Open		6	5	4	3	5.5	5	4	3.5	3	2	1.5	928	6	5.5	4.5
	BHP		1.44	1.54	1.64	1.74	1.84	1.94	2.04	2.14	2.24	2.34	2.44	2.54	2.64	2.74	2.84
	Sheave/Mtr		B	B	B	A	A	A	A	A	A	A	A	C	C	C	C
4800	RPM		647	678	708	738	766	793	819	844	867	891	914	937	959	980	1001
	Turns Open		5.5	4.5	3.5	6	5	4.5	4	3.5	2.5	2	1.5	6	5.5	5	4.5
	BHP	1.44	1.54	1.64	1.74	1.84	1.94	2.04	2.14	2.24	2.34	2.44	2.54	2.64	2.74	2.84	2.94
4900	Sheave/Mtr	B	В	В	B	A	A	A	A	A	A	A	A	С	C	C	C
	RPM	631	662	690	720	749	777	803	827	852	877	900	923	946	966	988	1009
	Turns Open BHP	6 1.54	5 1.64	4	3.5 1.84	5.5 1.94	5 2.04	4.5 2.14	3.5 2.24	3 2.34	2.5 2.44	2 2.54	1 2.64	6 2.74	5.5 2.84	5 2.94	4.5
	Sheave/Mtr	1.54 B	1.64 B	1.74 B	1.84 B	1.94 A	2.04 A	2.14 A	2.24 A	2.34 A	2.44 A	2.54 A	2.64 A	2.74 C	2.84 C	2.94 C	3.04 E
5000	RPM	642	672	702	731	760	785	811	837	862	886	909	932	953	975	996	1017
	Turns Open	5.5	5	3.5	3	5.5	4.5	4	3.5	3	2	1.5	1	6	5	4.5	4.5
	BHP	1.64	1.74	1.84	1.94	2.04	2.14	2.24	2.34	2.44	2.54	2.64	2.74	2.84	2.94	3.04	3.19
5100	Sheave/Mtr	В	В	В	A	A	A	A	A	A	A	A	С	С	С	E	E
0.00	RPM	655	685	714	743	769	798	822	847	872	896	917	940	962	983	1005	1025
	Turns Open	5.5	4.5	3.5	6	5	4.5	4	3	2.5	2	1.5	6	5.5	5	5	4.5
	BHP	1.74	1.84	1.94	2.04	2.14	2.24	2.34	2.44	2.54	2.64	2.74	2.84	2.94	3.09	3.19	3.29
5200	Sheave/Mtr RPM	B 668	B 697	B 726	A 752	A 782	A 806	A 832	A	A 882	A 903	A 926	C 949	C 971	E 992	E 1013	E 1032
	Turns Open	5	697	3	5.5	782	806	3.5	857 3	2	903	926	949 6	5.5	992 5	4.5	1032
	BHP	5 1.84	4	2.04	2.14	2.24	2.34		2.54		2.74	2.84	2.94	3.09	3.19	3.29	3.39
	Sheave/Mtr	1.84 B	1.94 B	2.04 A	2.14 A	2.24 A	2.34 A	2.44 A	2.54 A	2.64 A	2.74 A	2.84 C	2.94 C	3.09 E	3.19 E	3.29 E	3.39 E
5300	RPM	680	709	737	763	790	817	842	867	889	912	935	957	979	1000	1021	1042
	Turns Open	4.5	3.5	6	5.5	4.5	4	3.5	2.5	2	1.5	6		5.5	5	4.5	4

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

For applications requiring higher static pressures, contact your local representative. Performance data does not include drive losses and is based on sea level conditions. Do not operate in black regions. All airflow in rated at lowest Voltage if unit is dual Voltage rated, i.e. 208V for 208-230V units.

Table Continued on Next Page

150 Table Continued from Previous Page

All Data is Wet Coil

Airflow	ESP						Airflow ((cfm) at I	External	Static P	ressure	(in. wg)					
(SCFM)	ESP	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP	1.94	2.04	2.14	2.24	2.34	2.44	2.54	2.64	2.74	2.84	2.94	3.09	3.19	3.29	3.39	3.49
5400	Sheave/Mtr	В	В	A	A	A	A	A	A	A	A	С	E	E	E	E	E
5400	RPM	691	717	745	772	799	825	850	873	897	920	943	965	986	1006	1026	1047
	Turns Open	4	3.5	5.5	5	4.5	3.5	3	2.5	1.5	1	6	6	5	4.5	4	3.5
	BHP	2.04	2.14	2.24	2.34	2.44	2.54	2.64	2.74	2.84	3.09	3.14	3.24	3.34	3.44	3.54	3.69
5500	Sheave/Mtr	В	A	A	A	A	A	A	A	A	D	E	E	E	E	E	E
5500	RPM	704	729	756	783	810	836	859	883	907	929	952	972	993	1014	1035	1055
	Turns Open	4	6	5.5	4.5	4	3.5	3	2	1.5	1	6	5.5	5	4.5	4	3.5
	BHP	2.14	2.24	2.34	2.44	2.54	2.64	2.74	2.84	3.00	3.14	3.24	3.34	3.44	3.54	3.69	3.79
5600	Sheave/Mtr	В	A	A	A	A	A	A	A	D	D	E	E	E	E	E	E
5000	RPM	714	740	767	794	818	844	868	892	916	938	959	981	1002	1023	1043	1063
	Turns Open	3.5	6	5	4.5	4	3	2.5	2	1.5	1	6	5.5	4.5	4	3.5	3
	BHP	2.24	2.34	2.44	2.54	2.64	2.74	2.89	3.04	3.14	3.24	3.34	3.44	3.59	3.74	3.84	3.94
5700	Sheave/Mtr	В	A	A	A	A	A	A	D	D	E	E	E	E	E	E	E
5700	RPM	726	752	779	803	829	854	878	902	925	948	970	990	1011	1031	1051	1071
	Turns Open	3	5.5	5	4	3.5	3	2	2	1	6	5.5	5	4.5	4	3.5	3
	BHP	2.34	2.44	2.54	2.64	2.74	2.84	3.00	3.14	3.24	3.34	3.44	3.59	3.74	3.84	3.94	4.04
5800	Sheave/Mtr	A	A	A	A	A	A	D	D	D	E	E	E	E	E	E	E
5800	RPM	738	763	788	813	839	864	888	911	934	955	977	998	1019	1039	1058	1077
	Turns Open	6	5	4.5	4	3.5	2.5	2	1.5	1	6	5.5	5	4.5	4	3.5	2.5
	BHP	2.44	2.54	2.64	2.74	2.89	3.04	3.14	3.24	3.34	3.49	3.64	3.74	3.84	3.94	4.09	4.19
5900	Sheave/Mtr	A	A	A	A	A	D	D	D	E	E	E	E	E	E	E	E
5900	RPM	750	775	799	824	849	874	898	921	944	964	986	1007	1027	1046	1068	1086
	Turns Open	5.5	5	4	3.5	3	2.5	2	1.5	6	5.5	5	4.5	4	3.5	3	2.5
	BHP	2.54	2.64	2.74	2.89	3.04	3.14	3.24	3.34	3.49	3.64	3.74	3.84	3.99	4.14	4.24	4.34
	Sheave/Mtr	A	A	A	A	D	D	D	D	E	E	E	E	E	E	E	E
6000	RPM	758	783	808	833	858	880	904	927	950	972	993	1014	1033	1053	1073	1092
	Turns Open	5.5	4.5	4	3.5	3	2.5	1.5	1	6	5.5	5	4.5	4	3.5	3	2.5
	BHP	2.64	2.74	2.89	3.04	3.14	3.24	3.34	3.49	3.64	3.74	3.84	3.99	4.14	1.24	4.34	4.49
6100	Sheave/Mtr	A	A	A	D	D	D	D	D	E	E	E	E	E	E	E	E
6100	RPM	769	794	819	843	866	890	913	936	958	980	1000	1021	1041	1061	1081	1099
	Turns Open	5	4.5	3.5	3.5	2.5	2	1.5	1	6	5.5	4.5	4	3.5	3	2.5	2
	BHP	2.84	2.94	3.04	3.14	3.24	3.39	3.54	3.64	3.74	3.89	4.04	4.14	4.24	4.39	4.54	4.64
6000	Sheave/Mtr	A	A	D	D	D	D	D	E	E	E	E	E	E	E	E	E
6200	RPM	781	815	830	854	878	900	923	946	968	988	1009	1030	1050	1070	1089	1107
	Turns Open	4.5	4	3.5	3	2.5	2	1	6	5.5	5	4.5	4	3.5	3	2.5	2
	BHP	2.94	3.04	3.14	3.29	3.44	3.54	3.64	3.79	3.94	4.04	4.14	4.29	4.44	4.54	4.69	4.84
	Sheave/Mtr	A	D	D	D	D	D	D	E	E	E	E	E	E	E	E	E
6300	RPM	793	817	841	863	886	910	933	955	977	997	1018	1038	1058	1078	1097	1115
	Turns Open	4.5	4	3.5	3	2	1.5		6	5.5	5	4.5	4	3	2.5	2	1.5

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

ELV 168 Blower Performance

All	Data	is	Wet	Coil	

Airflow							Airflow	(cfm) at	Externa	I Static F	Pressure	(in. wg)					
(SCFM)	ESP	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP				0.58	0.68	0.74	0.82	0.88	0.98	1.08	1.18	1.28	1.38	1.48	1.58	1.68
4200	Sheave/Mtr				В	В	В	В	A	A	A	A	A	A	A	A	С
	RPM	-			457	499	537	577	612	647	678	710	737	764	791	815	838
	Turns Open				6	5	3.5	2.5	6	5.5	4.5	3.5	3	2	1.5	1	3
	BHP				0.63	0.68	0.78	0.88	0.98	1.08	1.18	1.28	1.38	1.48	1.58	1.68	1.8
4400	Sheave/Mtr				В	В	В	В	A	A	A	A	A	A	A	С	С
	RPM				467	507	548	584	621	653	684	716	743	772	797	821	847
	Turns Open				5.5	4.5	3.5	2.5	6	5	4	3.5	2.5	2	1	3.5	3
	BHP				0.68	0.78	0.88	0.98	1.08	1.18	1.28	1.38	1.48	1.58	1.68	1.78	1.88
4600	Sheave/Mtr	-			B	B	B	B	A	A	A	A	A	A	A	C	C
	RPM Turns Open				476 5.5	518 4.5	555 3	590 2	627 5.5	659 5	692 4	721	751 2.5	777	803 1	829 3.5	853 2.5
	BHP			0.68		4.5	0.98	1.08				1.48					1.98
	Sheave/Mtr			0.68 B	0.78 B	0.88 B	0.98 B	B	1.18 A	1.28 A	1.38 A	1.48 A	1.58 A	1.68 A	1.78 C	1.88 C	1.98 C
4800	RPM			446	485	527	563	600	633	665	697	726	756	783	811	835	858
	Turns Open			6	485	4	3	1.5	5.5	4.5	4	3	2.5	1.5	4	3	2.5
	BHP			0.68	0.78	0.88	0.98	1.08	1.18	1.28	1.48	1.58	1.68	1.78	1.88	1.98	2.08
	Sheave/Mtr			0.68 B	0.78 B	0.88 B	0.98 B	1.08 B	A	1.28 A	1.48 A	1.58 A	1.68 A	1.78 A	1.88 C	1.98 C	2.08 E
5000	RPM			452	495	532	567	604	636	670	700	729	759	786	813	838	864
	Turns Open			6	5	4	2.5	1.5	5.5	4.5	3.5	3	2	1.5	4	3	2.5
	BHP			0.86	0.96	1.06	1.16	1.26	1.36	1.46	1.56	1.66	1.76	1.86	2.06	2.16	2.26
	Sheave/Mtr			B	B	B	В	A	A	A	A	A	A	A	E	E	E
5200	RPM			460	500	536	570	606	638	671	701	729	759	786	814	839	865
	Turns Open			6	4.5	3.5	2.5	6	5.5	4.5	3.5	2.5	2	1	4	3.5	2.5
	BHP			0.86	0.96	1.06	1.18	1.28	1.38	1.48	1.58	1.68	1.78	1.88	2.08	2.18	2.28
5400	Sheave/Mtr			В	В	В	В	A	A	A	A	A	A	A	E	E	E
5400	RPM			463	504	539	576	609	641	674	703	734	762	788	816	841	867
	Turns Open			5.5	4.5	3.5	2.5	6	5	4.5	3.5	2.5	2	1	4	3.5	2.5
	BHP			0.88	0.98	1.08	1.28	1.38	1.48	1.58	1.68	1.78	1.88	2.08	2.18	2.24	2.44
5600	Sheave/Mtr			B	В	В	B	A	A	A	A	A	A	D	E	E	E
	RPM Turns Open	-		474 5.5	510 4	545 3	581 2	613 6	647 5	677 4	706	737 2.5	764	793 1.5	818 4	843 3.5	869 2.5
	BHP		0.88	0.98	1.08			1.48	1.58	4	1.78		2.08	2.18	2.28	2.38	2.3
	Sheave/Mtr	-	0.88 B	0.98 B	1.08 B	1.18 B	1.28 B	1.48 A	1.58 A	1.68 A	1.78 A	1.88 A	2.08 D	2.18 D	2.28 E	2.38 E	2.48 E
5800	RPM		440	481	517	551	586	618	651	681	710	740	767	795	821	845	872
	Turns Open		6	5	4	3	2	5.5	4.5	4	3	2	2	1.5	3.5	3	2
	BHP		0.98	1.08	1.18	1.28	1.38	1.48	1.68	1.78	1.88	2.08	2.18	2.28	2.38	2.48	2.58
6000	Sheave/Mtr		В	В	В	В	В	A	A	A	A	D	D	D	E	E	E
6000	RPM		455	492	526	563	595	628	658	687	718	745	774	800	826	852	876
	Turns Open		6	5	3.5	2.5	1.5	5.5	4.5	3.5	3	2.5	2	1.5	3.5	3	2
	BHP		1.06	1.18	1.28	1.38	1.48	1.68	1.78	1.88	1.98	2.08	2.28	2.38	2.48	2.68	2.78
6200	Sheave/Mtr		B	B	B	B	B	A	A	A	A	D	D	D	E	E	E
	RPM		459	499	533 3.5	569 2.5	600 1.5	633 5.5	663 4	691 3.5	722 2.5	749 2.5	777 2	803	828 3.5	854 3	878 2
	Turns Open BHP	0.00															-
	Sheave/Mtr	0.98 B	1.08 B	1.28 B	1.38 B	1.48 B	1.68 A	1.78 A	1.88 A	1.98 A	2.08 D	2.28 D	2.38 D	2.48 D	2.68 E	2.78 E	2.88 E
6400	RPM	441	478	513	549	581	614	644	672	703	730	759	785	810	837	861	887
	Turns Open	6	5.5	4	3	2	6	5	4	3.5	3	2.5	1.5	1	3	2.5	2
	BHP	1.08	1.28	1.38	1.48	1.66	1.78	1.88	1.98	2.08	2.28	2.46	2.58	2.68	2.88	2.98	
	Sheave/Mtr	B	B	B	B	B	A .	A	A	D	D	D	D	E.00	E.00	E.50	
6600	RPM	456	495	529	561	595	625	656	685	712	741	767	795	820	844	870	
	Turns Open	6	5	3.5	2.5	2	5.5	4.5	4	3.5	3	2	1.5	3.5	3	2.5	
	BHP	1.26	1.38	1.48	1.58	1.68	1.88	1.98	2.08	2.28	2.38	2.48	2.68	2.88	2.98		
6800	Sheave/Mtr	В	В	В	В	A	A	A	D	D	D	D	D	E	E		
	RPM	471	506	539	574	604	633	664	692	721	747	773	800	825	851		
	Turns Open	5.5	4.5	3.5	2.5	6	5.5	4.5	4	3	2.5	2	1	3.5	2.5		
	BHP	1.28	1.48	1.58	1.68	1.88	1.98	2.08	2.28	2.46	2.58	2.68	2.88	2.98			
7000	Sheave/Mtr RPM	B 496	B	B	B	A	A 647	D 674	D 704	D 720	D 756	D 794	D	E			
	Turns Open	486	520 4	555 3	586 2	615 6	647 5	674 4.5	704 3.5	730	756 2.5	784	808	835			
	rums open	1 3	4	1 3		0	S	4.5	1 3.5	3	1 2.5	G.I J		3			

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

Large (ELV) Series

Created: September 1, 2017

ELV 192 Blower Performance

All Data is Wet Coil

Airflow							Airflow	(cfm) at	External	Static F	Pressure	(in. wg)					
(SCFM)	ESP	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP			0.68	0.78	0.88	0.98	1.08	1.18	1.28	1.38	1.48	1.58	1.68	1.78	1.88	1.98
4800	Sheave/Mtr			В	В	В	В	В	A	A	A	A	A	A	С	С	С
	RPM			446	485	527	563	600	633	665	697	726	756	783	811	835	858
	Turns Open BHP			6	5	4	3	1.5	5.5	4.5	4	3	2.5	1.5	3.5	3	2.5
	Sheave/Mtr			0.68 B	0.78 B	0.88 B	0.98 B	1.08 B	1.18 A	1.28 A	1.48 A	1.58 A	1.68 A	1.78 A	1.88 C	1.98 C	2.08 C
5000	RPM			452	495	532	567	604	636	670	700	729	759	786	813	838	864
	Turns Open			6	5	4	2.5	1.5	5.5	4.5	3.5	3	2.5	1.5	3.5	3	2.5
	BHP			0.86	0.96	1.06	1.16	1.26	1.36	1.46	1.56	1.66	1.76	1.86	2.06	2.16	2.26
5200	Sheave/Mtr			В	В	В	В	В	A	A	A	A	A	A	С	С	С
5200	RPM			460	500	536	570	606	638	671	701	729	759	786	814	839	865
	Turns Open			6	5	3.5	2.5	1.5	5	4.5	3.5	3	2.5	1	4	3	2.5
	BHP			0.86	0.96	1.06	1.18	1.28	1.38	1.48	1.58	1.68	1.78	1.88	2.08	2.18	2.28
5400	Sheave/Mtr RPM			B 463	B 504	B 539	B 576	A 609	A 641	A 674	A 703	A 734	A 762	A 788	C 816	C 841	C 867
	Turns Open			5.5	4.5	3.5	2.5	6	5	4	3.5	2.5	2	1	4	3	2.5
	BHP			0.88	0.98	1.08	1.28	1.38	1.48	1.58	1.68	1.78	1.88	2.08	2.18	2.24	2.44
5055	Sheave/Mtr			B	B	B	B	A	A	A	A	A	A	A	C	C	C
5600	RPM			474	510	545	581	613	647	677	706	737	764	793	818	843	869
	Turns Open			5.5	4.5	3	2	6	5	4	3.5	2.5	2	1.5	4	3	2.5
	BHP		0.88	0.98	1.08	1.18	1.28	1.48	1.58	1.68	1.78	1.88	2.08	2.18	2.28	2.38	2.48
5800	Sheave/Mtr RPM		B	B	B	B	B	A 619	A GE1	A 681	A 710	A 740	A 767	A 705	C	C	C
	Turns Open		440 6	481 5	517 4	551 3	586 2	618 6	651 4.5	681 4	710	740 2.5	767 2	795 1.5	821 3.5	845 3	872 2.5
	BHP		0.98	1.08	1.18	1.28	1.38	1.48	1.68	1.78	1.88	2.08	2.18	2.28	2.38	2.48	2.58
6000	Sheave/Mtr		B	B	В	B	B	A	A	A	A	A	A	A	C	C	C
6000	RPM		455	492	526	563	595	628	658	687	718	745	774	800	826	852	876
	Turns Open		6	5	4	2.5	1.5	5.5	4.5	3.5	3	2.5	2	1.5	3.5	3	2
	BHP		1.06	1.18	1.28	1.38	1.48	1.68	1.78	1.88	1.98	2.08	2.28	2.38	2.48	2.68	2.78
6200	Sheave/Mtr RPM		B 459	B 499	B 533	B 569	B 600	A 633	A 663	A 691	A 722	A 749	A 777	A 803	C 828	C 854	C 878
	Turns Open		6	4.5	3.5	2.5	1.5	5.5	4.5	3.5	3	2	1.5	1	3.5	3	2
	BHP	0.98	1.08	1.28	1.38	1.48	1.68	1.78	1.88	1.98	2.08	2.28	2.38	2.48	2.68	2.78	2.88
6400	Sheave/Mtr	В	В	В	В	В	A	A	A	A	A	A	A	A	С	С	С
	RPM	441	478	513	549	581	614	644	672	703	730	759	785	810	837	861	887
	Turns Open BHP	6 1.08	5 1.28	4.5 1.38	3 1.48	2	6 1.78	5 1.88	4 1.98	3.5 2.08	2.5 2.28	2	1.5 2.58	1 2.68	3.5 2.88	2.5 2.98	2 3.08
	Sheave/Mtr	B	B	B	B	B	A	A	1.96 A	2.08 A	2.20 A	2.40 A	2.56 A	2.00 C	2.00 C	2.96 C	5.08 E
6600	RPM	456	495	529	561	595	625	656	685	712	741	767	795	820	844	870	893
	Turns Open	6	5	4	3	2	6	4.5	4	3.5	2.5	2	1.5	3.5	3	2.5	2
	BHP	1.26	1.38	1.48	1.58	1.68	1.88	1.98	2.08	2.28	2.38	2.48	2.68	2.88	2.98	3.08	3.28
6800	Sheave/Mtr	B	B	B	B	A	A	A	A	A	A	A	A	C	C	E	E
	RPM Turns Open	471 5.5	506 4.5	539 3.5	574 2.5	604 6	633 5.5	664 4.5	692 4	721	747 2.5	773 2	800 1.5	825 3.5	851 3	875 2	898 1.5
	BHP	1.28	1.48	1.58	1.68	1.88	1.98	2.08	2.28	2.46	2.58	2.68	2.88	2.98	3.08	3.28	3.48
7000	Sheave/Mtr	B	B	B	B	A	A	A A	A A	A	A A	A	2.00 C	C	E 5.00	E	5.40 E
7000	RPM	486	520	555	586	615	647	674	704	730	756	784	808	835	858	883	906
	Turns Open	5	4	3	2	6	5	4.5	3.5	3	2	1.5	3.5	3	2.5	2	1.5
	BHP Sheave/Mtr	1.48 B	1.58 B	1.68 B	1.88 B	1.98	2.08 A	2.28 A	2.38 A	2.48	2.68	2.88 A	2.98 C	3.08 E	3.28 E	3.48 E	3.66 E
7200	RPM Sneave/Mtr	495	528	562	В 593	A 624	652	680	708	A 734	A 762	A 787	812	838	861	886	909
	Turns Open	4.5	4	2.5	1.5	6	5	4	3.5	3	2	1.5	4	3	2.5	2	1.5
	BHP	1.58	1.68	1.86	1.98	2.08	2.28	2.38	2.48	2.68	2.88	2.98	3.08	3.28	3.48	3.58	3.68
7400	Sheave/Mtr	В	В	В	A	A	A	A	A	А	A	A	E	E	E	E	E
7400	RPM	506	541	572	605	633	661	690	716	744	769	793	820	843	868	891	913
	Turns Open	4.5	3.5	2.5	6	5.5	4.5	4	3	2.5	2	1.5	4	3	2.5	1.5	1
	BHP	1.68	1.78	1.88	2.08	2.26	2.38	2.48	2.68	2.86	2.98	3.08	3.28	3.46	3.58	3.68	3.88
7600	Sheave/Mtr RPM	B 515	B 549	B 580	A 611	A 640	A 667	A 696	A 721	A 749	A 773	D 798	E 823	E 847	E 872	E 894	E 918
	Turns Open	4	3	2	6	5.5	4.5	3.5	3	2.5	2	1	3.5	3	2	1.5	1
	BHP	1.78	1.88	2.08	2.18	2.28	2.48	2.68	2.78	2.88	3.08	3.28	3.38	3.48	3.68	3.88	4.08
7800	Sheave/Mtr	В	В	В	A	Α	A	Α	A	Α	D	D	E	E	E	E	E
	RPM	525	556	586	617	645	674	701	726	753	778	804	827	850	875	897	921
	Turns Open BHP	4	2.5 2.08	2	5.5 2.28	5 2.48	4 2.68	3.5 2.88	3 2.98	2.5 3.08	1.5 3.28	1 3.48	3.5 3.58	2.5 3.68	2 3.88	1.5 4.08	1 4.28
	Sheave/Mtr	1.88 B	2.08 B	2.18 B	2.28 A	2.48 A	2.68 A	2.88 A	2.98 A	3.08 D	3.28 D	3.48 E	3.58 E	3.68 E	3.88 E	4.08 E	4.28 E
8000	RPM	539	569	601	629	659	685	711	738	763	789	812	835	860	882	906	927
														1			1

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

ELV 240 Blower Performance

All Data is Wet Coil

Airflow	ESP						Airfle	ow (cfm) a	at Externa	I Static P	ressure (i	n. wg)					
(SCFM)		0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP				1.18	1.28	1.38	1.48	1.68	1.78	1.88	2.08	2.18	2.28	2.38	2.48	2.68
6000	Sheave/Mtr				В	В	В	В	A	A	A	A	A	A	A	A	С
	RPM				529	563	595	626	659	689	717	745	774	801	826	851	877
	Turns Open				6	5	4	3	6	5	4.5	4	3.5	2.5	2	1	5.5
	BHP				1.28	1.38	1.48	1.68	1.78	1.88	2.08	2.18	2.28	2.38	2.48	2.68	2.88
6200	Sheave/Mtr				В	В	В	В	A	A	A	A	A	A	A	A	С
0200	RPM				542	575	607	637	670	699	726	754	783	809	834	859	884
	Turns Open				5.5	4.5	3.5	3	5.5	5	4.5	3.5	3	2.5	1.5	1	5
	BHP			1.28	1.38	1.48	1.68	1.78	1.88	2.08	2.18	2.28	2.48	2.58	2.68	2.88	3.06
6400	Sheave/Mtr			В	В	В	В	A	A	A	A	A	A	A	A	С	С
0400	RPM			520	556	588	619	649	680	708	736	765	791	817	841	868	891
	Turns Open			6	5	4	3.5	6	5.5	4.5	4	3.5	2.5	2	1.5	5.5	5
	BHP			1.38	1.48	1.68	1.78	1.88	2.08	2.18	2.28	2.48	2.58	2.68	2.88	2.98	3.08
6600	Sheave/Mtr			В	В	В	В	A	A	A	A	A	A	A	A	С	С
0000	RPM			537	570	601	631	662	691	718	745	774	799	824	849	875	898
	Turns Open			5.5	4.5	4	3	5.5	5	4.5	3.5	3	2.5	2	1	5	4.5
	BHP			1.48	1.68	1.78	1.88	2.08	2.18	2.28	2.48	2.58	2.68	2.88	2.98	3.08	3.28
6800	Sheave/Mtr			В	В	В	В	A	A	A	A	A	A	A	A	С	С
	RPM			551	583	613	642	674	701	728	754	783	808	833	857	882	905
	Turns Open			5.5	4.5	3.5	2.5	5.5	5	4	3.5	3	2	1.5	1	5	4.5
	BHP		1.48	1.68	1.78	1.88	2.08	2.18	2.28	2.48	2.58	2.68	2.88	3.08	3.18	3.28	3.48
7000	Sheave/Mtr		В	В	В	В	A	A	A	A	A	A	A	A	С	С	С
	RPM		530	565	596	625	654	684	711	738	766	792	816	841	867	890	913
	Turns Open		6	5	4	3	6	5	4.5	4	3	2.5	2	1.5	5.5	4.5	4
	BHP		1.68	1.78	1.88	2.08	2.18	2.28	2.48	2.68	2.78	2.88	3.08	3.18	3.28	3.48	3.68
7200	Sheave/Mtr		В	В	В	В	A	A	A	A	A	A	A	A	С	С	С
	RPM		544	578	608	637	668	695	722	748	776	800	825	849	874	897	920
	Turns Open		5.5	4.5	3.5	2.5	5.5	5	4.5	3.5	3	2.5	1.5	1	5	4.5	4
	BHP		1.78	1.88	2.08	2.28	2.38	2.48	2.68	2.78	2.88	3.08	3.28	3.38	3.48	3.68	3.88
7400	Sheave/Mtr		В	В	В	В	A	A	A	A	A	A	A	С	С	С	С
	RPM		561	592	621	649	679	706	732	758	785	809	833	857	882	905	927
	Turns Open		5	4	3	2.5	5.5	4.5	4	3.5	2.5	2	1.5	5.5	5	4.5	3.5
	BHP	1.78	1.88	2.08	2.18	2.28	2.48	2.68	2.78	2.88	3.08	3.28	3.38	3.48	3.68	3.88	4.08
7600	Sheave/Mtr	В	В	В	В	A	A	A	A	A	A	A	A	С	С	С	С
	RPM	544	575	605	633	661	691	717	742	767	794	818	842	867	890	912	934
	Turns Open	5.5	4.5	3.5	3	5.5	5	4.5	4	3	2.5	2	1	5.5	5	4	3.5
	BHP	1.88	2.08	2.28	2.38	2.48	2.68	2.88	2.98	3.08	3.28	3.48	3.58	3.68	3.88	4.08	4.28
7800	Sheave/Mtr	B	B	B	A	A	A	A	A	A	A	A	A	C	C	C	C
	RPM	555	589	618	646	676	702	728	753	779	803	827	850	875	898	920	941
	Turns Open	5	4	3	6	5.5	4.5	4	3.5	3	2	1.5	1	5	4.5	4	3.5
	BHP	2.08	2.18	2.28	2.48	2.68	2.88	2.98	3.08	3.28	3.48	3.58	3.68	3.88	4.08	4.28	4.48
8000	Sheave/Mtr	B	B	B	A	A	A 710	A 707	A 700	A 700	A	A	C	C	C	C	C
	RPM	572	601	630	657	686	712	737	762	789	812	836	859	883	905	927	948
	Turns Open BHP	4.5 2.28	3.5 2.38	3 2.48	5.5 2.68	5 2.88	4.5 2.98	4	3 3.28	2.5 3.48	2 3.68	1.5 3.78	5.5 3.88	5 4.08	4.5	4	3.5 4.68
	BHP Sheave/Mtr							3.08									
8200		B	B	B	A 670	A 700	A 706	A 751	A 775	A	A	A	C	C 804	C 015	C 037	C
	RPM	589 4	617 3.5	645 2.5	672 5.5	700	726	751	775	801 2.5	824	847	872 5.5	894 5	915	937 4	960 3
	Turns Open BHP	4 2.48	2.58			4.5		3.5 3.28	3.48	3.68	1.5	4.08			4.5		
	Sheave/Mtr	2.48 B	2.58 B	2.68 A	2.88 A	3.08 A	3.18 A	3.28 A	3.48 A	3.68 A	4 A	4.08 A	4.18 C	4.28 C	4.48 C	4.68 C	4.88 C
8400	RPM	в 605	633	A 660			739	763	790		836	858	882		925		969
					689	714				813 2				904		946	3
	Turns Open	3.5	3	5.5	5	4.5	4	3	2.5	2	1.5	1	5	4.5	4	3.5	3

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

For applications requiring higher static pressures, contact your local representative. Performance data does not include drive losses and is based on sea level conditions. Do not operate in black regions. All airflow in rated at lowest Voltage if unit is dual Voltage rated, i.e. 208V for 208-230V units.

Table Continued on Next Page

All Data is Wet Coil

240 Table	Continued	from	Previous Pag	je
-----------	-----------	------	---------------------	----

Airflow	500						Airfle	ow (cfm) a	at Externa	I Static P	ressure (ii	n. wg)					
(SCFM)	ESP	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP	2.58	2.68	2.88	3.08	3.28	3.38	3.48	3.68	4	4.08	4.28	4.48	4.58	4.68	4.88	5.08
8600	Sheave/Mtr	В	A	Α	A	A	A	A	A	A	A	С	С	С	С	С	E
0000	RPM	621	649	675	703	728	752	776	802	827	847	869	893	914	935	956	979
	Turns Open	3	6	5.5	4.5	4	3.5	3	2.5	2	1	5.5	5	4.5	4	3.5	2.5
	BHP	2.78	2.88	3.08	3.28	3.48	3.68	3.78	4	4.08	4.28	4.48	4.68	4.88	4.98	5.08	5.28
8800	Sheave/Mtr	В	A	A	Α	Α	A	Α	Α	Α	A	С	С	С	С	E	E
0000	RPM	637	664	690	717	742	766	791	814	836	858	882	904	925	945	968	988
	Turns Open	2.5	5.5	5	4.5	3.5	3	2.5	2	1.5	1	5	4.5	4	3.5	3	2.5
	BHP	2.98	3.08	3.28	3.48	3.68	3.88	4.08	4.18	4.28	4.48	4.68	4.88	5.08	5.28	5.48	5.68
9000	Sheave/Mtr	A	A	A	Α	Α	A	Α	Α	Α	С	С	С	E	E	E	E
3000	RPM	653	679	707	731	755	779	804	826	848	870	893	914	935	955	978	997
	Turns Open	6	5	4.5	4	3.5	3	2.5	2	1.5	5.5	5	4.5	4	3.5	2.5	2
9200	BHP	3.18	3.28	3.48	3.68	3.88	4.08	4.28	4.48	4.68	4.78	4.88	5.08	5.28	5.48	5.68	5.88
	Sheave/Mtr	A	A	A	A	A	A	A	A	A	С	С	E	E	E	E	E
5200	RPM	668	694	721	745	768	791	816	838	860	883	904	925	945	967	987	1007
	Turns Open	5.5	5	4	3.5	3	2.5	2	1.5	1	5	4.5	4	3.5	3	2.5	2
	BHP	3.48	3.68	3.78	3.88	4.08	4.28	4.48	4.68	4.88	5.08	5.28	5.38	5.48	5.68	5.88	6.08
9400	Sheave/Mtr	A	A	A	A	A	A	A	A	С	E	E	E	E	E	E	E
5400	RPM	683	711	735	758	782	806	828	850	871	894	915	935	955	977	997	1016
	Turns Open	5	4.5	4	3.5	3	2.5	2	1	5.5	5	4.5	4	3.5	3	2	2
	BHP	3.68	3.88	3.98	4.08	4.28	4.48	4.68	4.88	5.08	5.28	5.48	5.68	5.88	6.08	6.28	6.48
9600	Sheave/Mtr	A	A	A	Α	Α	A	Α	Α	E	E	E	E	E	E	E	E
3000	RPM	698	725	749	772	795	819	836	862	883	906	926	946	968	987	1007	1025
	Turns Open	4.5	4	3.5	3	2.5	2	1.5	1	5	4.5	4	3.5	3	2.5	2	1.5
	BHP	3.88	4.08	4.28	4.48	4.68	4.88	4.98	5.08	5.28	5.48	5.68	5.88	6.08	6.28	6.48	6.68
9800	Sheave/Mtr	A	A	A	Α	A	A	Α	E	E	E	E	E	E	E	E	E
3000	RPM	715	739	762	785	810	831	853	874	896	917	937	956	978	997	1016	1035
	Turns Open	4.5	4	3.5	3	2.5	1.5	1	5.5	4.5	4.5	3.5	3	3	2.5	2	1.5
	BHP	4.08	4.28	4.48	4.68	4.88	5.08	5.28	5.48	5.68	5.88	6.08	6.28	6.48	6.68	6.78	6.88
40000	Sheave/Mtr	A	A	A	A	A	E	E	E	E	E	E	E	E	E	E	E
10000	RPM	730	753	776	798	822	844	865	885	908	928	948	967	988	1007	1026	1044
	Turns Open	4	3.5	3	2.5	2	6	5.5	5	4.5	4	3.5	3	2.5	2	1.5	1

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

ELV 300 Blower Performance

All Data is Wet Coil

Airflow							Airflow	(cfm) at	External	Static F	Pressure	(in. wg)					
(SCFM)	ESP	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP						2.08	2.28	2.48	2.58	2.68	2.88	3.08	3.28	3.48	3.68	3.88
7600	Sheave/Mtr						В	В	В	В	A	A	A	A	A	A	A
7600	RPM						659	688	718	746	774	802	829	855	879	905	931
	Turns Open						5.5	4.5	3.5	3	6	5	4.5	3.5	3	2	1.5
	BHP					2.08	2.28	2.38	2.48	2.68	2.88	3.08	3.28	3.48	3.68	3.88	4.06
7800	Sheave/Mtr					В	В	В	В	В	A	A	A	A	A	A	A
7800	RPM					639	669	702	729	757	785	811	838	862	887	913	938
	Turns Open					5.5	5	4	3	2.5	5.5	5	4	3.5	2.5	2	1
	BHP					2.28	2.38	2.48	2.68	2.88	3.08	3.28	3.38	3.48	3.68	3.88	4.08
8000	Sheave/Mtr					В	В	В	В	В	A	A	A	A	A	A	A
0000	RPM					651	683	710	739	767	794	821	845	870	895	920	945
	Turns Open					5.5	4.5	3.5	3	2	5.5	4.5	4	3	2.5	1.5	1
	BHP				2.18	2.28	2.48	2.68	2.88	3.08	3.28	3.38	3.48	3.68	3.88	4.08	4.28
8200	Sheave/Mtr				В	В	В	В	В	A	A	A	A	A	A	A	С
0200	RPM				631	661	692	722	750	778	804	831	854	879	904	928	951
	Turns Open				6	5	4	3.5	2.5	6	5	4.5	3.5	3	2	1.5	3.5
	BHP				2.28	2.48	2.68	2.88	3.08	3.18	3.28	3.48	3.68	3.88	4.08	4.28	4.48
8400	Sheave/Mtr				В	В	В	В	В	A	A	A	A	A	A	A	С
2.00	RPM				640	673	703	733	761	788	812	838	863	888	912	934	958
	Turns Open				5.5	5	4	3	2	5.5	5	4	3.5	2.5	2	1	3
	BHP				2.48	2.68	2.88	3.08	3.18	3.28	3.48	3.68	3.88	4.08	4.28	4.48	4.68
8600	Sheave/Mtr				B	B	B	B	A	A	A	A	A	A	A	A	C
	RPM				653 5.5	685 4.5	715	744	771	796 5.5	822 4.5	847 4	872	896	919	942	966 3
	Turns Open			0.40			3.5	2.5	6				3	2.5	1.5		_
	BHP			2.48 B	2.68	2.88 B	3.08 B	3.18 B	3.28 A	3.48	3.68	3.88	4.08	4.28	4.48	4.68 C	4.88 C
8800	Sheave/Mtr RPM			633	B 666	697	726	755	782	A 806	A 832	A 857	A 881	A 904	A 927	950	973
	Turns Open			6	5	4	3	2.5	5.5	5	4	3.5	3	2	1.5	3.5	2.5
	BHP			2.6	2.8	3	3.2	3.4	3.6	3.8	4	4.2	4.4	4.6	4.8	5	5.2
	Sheave/Mtr			B	B	B	B	B	A	A	A	A	A	A	A	C	E
9000	RPM			646	678	706	735	763	791	817	842	867	889	912	935	958	980
	Turns Open			5.5	4.5	3.5	3	2	5.5	4.5	4	3	2.5	2	1	3	2.5
	BHP			2.68	2.88	3.08	3.28	3.48	3.68	3.88	4.08	4.28	4.48	4.68	4.88	5.08	5.28
9200	Sheave/Mtr			В	В	В	В	A	A	A	A	A	A	A	A	E	E
0200	RPM			656	687	715	744	772	799	825	850	872	896	919	942	963	987
	Turns Open			5.5	4.5	3.5	2.5	6	5	4.5	3.5	3	2.5	1.5	1	3	2.5
	BHP		2.68	2.88	3.08	3.28	3.48	3.68	3.88	4.08	4.28	4.48	4.68	4.88	5.08	5.28	5.48
9400	Sheave/Mtr		В	В	В	В	В	A	A	A	A	A	A	A	E	E	E
	RPM		637 6	666 5	697	727	755 2.5	783 5.5	809 5	835 4	858 3.5	882 2.5	905 2	928	951	973 3	994 2
	Turns Open				4									1.5	3.5		
	BHP Sheave/Mtr		2.88 B	3.08 B	3.28 B	3.48 B	3.68 A	3.88 A	4.08 A	4.28 A	4.48 A	4.68 A	4.88 A	5.08 D	5.28 E	5.48 E	5.68 E
9600	RPM		647	678	708	738	766	793	819	844	867	891	914	937	959	980	1001
	Turns Open		5.5	4.5	3.5	3	6	5	4.5	4	3	2.5	2	1	3	2.5	2
	BHP	2.88	3.08	3.28	3.48	3.68	3.88	4.08	4.28	4.48	4.68	4.88	5.08	5.28	5.48	5.68	5.88
0900	Sheave/Mtr	В	B	B	В	B	A	A	A	A	A	A	D	E	E	E	E
9800	RPM	631	662	690	720	749	777	803	827	852	877	900	923	946	966	988	1009
	Turns Open	6	5	4	3.5	2.5	5.5	5	4.5	3.5	2.5	2	1.5	3.5	3	2.5	2
	BHP	3.08	3.28	3.48	3.68	3.88	4.08	4.28	4.48	4.68	4.88	5.08	5.28	5.48	5.68	5.88	6.08
10000	Sheave/Mtr	В	В	В	В	В	A	A	A	A	A	D	D	E	E	E	E
	RPM	642	672	702	731	760	785	811	837	862	886	909	932	953	975	996	1017
	Turns Open	5.5	4.5	4	3	2	5.5	4.5	4	3.5	2.5	2	1	3	2.5	2	2
	BHP Sheave/Mtr	3.28 B	3.48 B	3.68 B	3.88 B	4.08 A	4.28 A	4.48 A	4.68 A	4.88 A	5.08 D	5.28 D	5.48 D	5.68 E	5.88 E	6.08 E	6.38 E
10200	RPM	655	685	714	743	769	798	822	847	872	896	917	940	962	983	1005	1025
	Turns Open	5	4.5	3.5	2.5	6	5	4.5	3.5	3	2.5	1.5	1	302	2.5	2	1.5
	BHP	3.48	3.68	3.88	4.08	4.28	4.48	4.68	4.88	5.08	5.28	5.48	5.68	5.88	6.18	6.38	6.58
	Sheave/Mtr	B	B	B	-4.00 B	4.20 A	A.	4.00 A	4.00 A	D.00	D	E	E	E	E	E	E
10400	RPM	668	697	726	752	782	806	832	857	882	903	926	949	971	992	1013	1032
	Turns Open	5	4	3	2.5	5.5	5	4	3.5	2.5	2	1.5	3.5	3	2.5	2	1.5
	BHP	3.68	3.88	4.08	4.28	4.48	4.68	4.88	5.08	5.28	5.48	5.68	5.88	6.18	6.38	6.58	6.78
10600	Sheave/Mtr	В	В	В	В	A	A	A	D	D	D	D	E	E	E	E	E
10600	RPM	680	709	737	763	790	817	842	867	889	912	935	957	979	1000	1021	1042
	Turns Open	4.5	3.5	3	2	5.5	4.5	4	3	2.5	2	1	3	2.5	2	1.5	1

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

300 Table Continued from Previous Page

All Data is Wet Coil

Airflow	ESP						Airflow	(cfm) at	Externa	I Static F	Pressure	(in. wg)					
(SCFM)	ESP	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
	BHP	3.88	4.08	4.28	4.48	4.68	4.88	5.08	5.28	5.48	5.68	5.88	6.18	6.38	6.58	6.78	6.98
10800	Sheave/Mtr	В	В	В	A	A	A	D	D	D	D	E	E	E	E	E	E
10000	RPM	691	717	745	772	799	825	850	873	897	920	943	965	986	1006	1026	1047
	Turns Open	4.5	3.5	2.5	6	5	4.5	3.5	3	2	1.5	3.5	3	2.5	2	1.5	1
	BHP	4.08	4.28	4.48	4.68	4.88	5.08	5.28	5.48	5.68	6.18	6.28	6.48	6.68	6.88	7.08	7.38
11000	Sheave/Mtr	В	В	В	A	A	D	D	D	D	D	E	E	E	E	E	E
11000	RPM	704	729	756	783	810	836	859	883	907	929	952	972	993	1014	1035	1055
	Turns Open	3.5	3	2	5.5	5	4	3	2.5	2	1.5	3.5	3	2.5	2	1	0.5
	BHP	4.28	4.48	4.68	4.88	5.08	5.28	5.48	5.68	6.00	6.28	6.48	6.68	6.88	7.08	7.38	
44000	Sheave/Mtr	В	В	A	A	D	D	D	D	D	D	E	E	E	E	E	-
11200	RPM	714	740	767	794	818	844	868	892	916	938	959	981	1002	1023	1043	-
	Turns Open	3.5	2.5	6	5.5	4.5	3.5	3	2.5	1.5	1	3	2.5	2	1.5	1	-
	BHP	4.48	4.68	4.88	5.08	5.28	5.48	5.78	6.08	6.28	6.48	6.68	6.88	7.18	7.48		
11400	Sheave/Mtr	В	В	A	D	D	D	D	D	D	D	E	E	E	E		
11400	RPM	726	752	779	803	829	854	878	902	925	948	970	990	1011	1031		
	Turns Open	3	2	5.5	5	4.5	3.5	3	2	1.5	1	3	2.5	2	1.5		
	BHP	4.68	4.88	5.08	5.28	5.48	5.68	6.00	6.28	6.48	6.68	6.88	7.18	7.48			
11600	Sheave/Mtr	В	A	D	D	D	D	D	D	D	E	E	E	E			
11600	RPM	738	763	788	813	839	864	888	911	934	955	977	998	1019			
	Turns Open	2.5	6	5.5	4.5	4	3	2.5	2	1	3.5	2.5	2	1.5			
	BHP	4.88	5.08	5.28	5.48	5.78	6.08	6.28	6.48	6.68	6.98	7.28	7.48				
11800	Sheave/Mtr	В	D	D	D	D	D	D	D	D	E	E	E	-			
11800	RPM	750	775	799	824	849	874	898	921	944	964	986	1007	-			
	Turns Open	2	5.5	5	4	3.5	3	2.5	2	1	3	2.5	2				
	BHP	5.08	5.28	5.48	5.78	6.08	6.28	6.48	6.68	6.98	7.28	7.48					
12000	Sheave/Mtr	D	D	D	D	D	D	D	D	E	E	E					
12000	RPM	758	783	808	833	858	880	904	927	950	972	993					
	Turns Open	6	5.5	4.5	4	3.5	2.5	2	1.5	3.5	3	2.5					
	BHP	5.28	5.48	5.78	6.08	6.28	6.48	6.68	6.98	7.28	7.48						
12200	Sheave/Mtr	D	D	D	D	D	D	D	D	E	E						
12200	RPM	769	794	819	843	866	890	913	936	958	980						
	Turns Open	6	5	4.5	4	3	2.5	2	1.5	3	2.5						
	BHP	5.68	5.88	6.08	6.28	6.48	6.78	7.08	7.28	7.48							
12400	Sheave/Mtr	D	D	D	D	D	D	D	D	E							
12400	RPM	781	815	830	854	878	900	923	946	968							
	Turns Open	5.5	4.5	4.5	3.5	3	2	1.5	1	3							
	BHP	5.88	6.08	6.28	6.58	6.88	7.08	7.28									
12600	Sheave/Mtr	D	D	D	D	D	D	D									
12000	RPM	793	817	841	863	886	910	933									
	Turns Open	5	4.5	4	3	2.5	2	1.5									

A = Standard Static/Standard Motor, B = Low Static/Standard Motor, C = High Static/Standard Motor, D = Standard Static/Large Motor, E = High Static/Large Motor Unit factory shipped with standard static sheave and drive at 2.5 turns open. Other speed require field selection.

Blower Performance Data - Units with Reheat (PSC Motor)

Coil Face	ELV with R	eheat - Additional ESP Lo	ss
Velocity FPM	ELV084, 096, 168 & 192 In. of Water	ELV120 & 240 In. of Water	ELV300 In. of Water
200	0.14	-	-
225	0.15	-	-
250	0.16	-	-
275	0.17	0.17	-
300	0.18	0.18	-
325	0.19	0.19	0.23
350	0.21	0.21	0.25
375	0.22	0.22	0.26
400	-	0.24	0.28
425	-	0.26	0.30
450	-	0.29	0.33
475	-	-	0.35
500	-	-	0.38
525	-	-	0.41
550	-	-	0.45
575	-	-	0.48

All data is for wet coil.

Example:

Reheat coil loss can be determined from the above table. Coil velocity (FPM) = Airflow (CFM) / Face Area (sq. ft.)

- 1. ELV120 has a face area of 11 sq. ft. (see physical data table).
- 2. At 4,200 cfm, coil velocity (FPM) = 4,200 / 11 = 380 FPM
- 3. From above table, ESP is .22.
- ELV120 (without Reheat) A Drive at .5 ESP, 2.5 turns = 4200 CFM ELV120 (with Reheat) A Drive at .72 ESP, 2.5 turns = 3900 CFM If drop in CFM is not acceptable, adjust turns to 1.5 for 4200 CFM. Note - Sometimes drive package must be changed.

Unit Commissioning & Operating Conditions

Environment - This unit is designed for indoor installation only. Do not install in an area subject to freezing or where humidity levels can cause cabinet condensation.

Power Supply - A voltage variation of +/- 10% of nameplate utilization voltage is acceptable.

Operation and performance is primarily dependent upon return air temperature, airflow, water temperature, water flow rate and ambient air temperature. This water to air heat pump is capable of operating over a wide temperature range and with flow rates of between 1.5 GPM (.1 l/s) and 3 GPM (.19 l/s) per ton, however usually no more than one of these factors may be at a minimum or maximum level at a time. The commissioning table indicates air and water temperatures which are suitable for initial unit commissioning in an environment where the flow rate and water temperature is not yet stable and to avoid nuisance shut down of the units freeze and refrigerant pressure safeties.

The operating table indicates the maximum and minimum ranges of the unit.

For more specific unit performance reference the product catalog, the submittal data sheets or contact your supplier for assistance.

Table 6: Building Commissioning

BUILDING COMMISSIONING								
	ALL ELV MODELS							
	Cooling °F [°C]	Heating °F [°C]						
AMBIENT MIN - MAX DB	45-110 [7-43]	40-85 [4.5-29]						
RETURN AIR MIN DB/WB	50/45 [10/7]	40 [4.5]						
RETURN AIR MAX DB/WB	110/83 [43/28]	85 [29]						
STANDARD UNIT ENTERING WATER MIN* - MAX	40-120 [4.5-49]	60-90 [16-43]						
EXTENDED RANGE UNIT** EN- TERING WATER MIN* - MAX	30-120 [-1-49]	20-90 [-6.7-43]						

*- Requires optional insulation package when operating below the dew point

**- Requires antifreeze, optional insulation package and jumperclipped.

Table 6A: Unit Operating Limits

UNIT OPERATING LIMITS							
	All ELV	/ Models					
	Cooling °F [°C]	Heating °F [°C]					
AMBIENT MIN - MAX DB	50-100 [10-38]	50-85 [10-29]					
RETURN AIR MIN DB/WB***	65/55 [18/12.8]	60 [16]					
RETURN AIR MAX DB/WB	95/75 [35/24]	80 [27]					
STANDARD UNIT ENTERING WATER MIN* - MAX	50-120 [10-49]	60-90 [16-43]					
EXTENDED RANGE UNIT** EN- TERING WATER MIN* - MAX	30-120 [-1-49]	20-90 [-6.7-43]					

*- Requires optional insulation package when operating below the dew point **- Requires antifreeze, optional insulation package and jumper clipped.

***- Return air min. can be 50DB for units with hot gas bypass option

Piping System Cleaning & Flushing

CAUTION! To avoid possible damage to a plastic (PVC) piping system, do not allow temperatures to exceed 110°F [43°C].

CAUTION! DO NOT use 'stop leak' or any similar chemical agent in this system. Addition of these chemicals to the loop water will foul the system and inhibit unit operation.

- Note: Enertech strongly recommends all piping connections, both internal and external to the unit, be pressure tested for leakage by an appropriate method prior to any finishing of the interior space or before access to all connections is limited. Enertech will not be responsible or liable for damages from water leaks due to inadequate or a lack of pressurized leak testing during installation.
- Cleaning and flushing of the WLHP piping system is the single most important step to ensure proper start-up and continued efficient operation of the system.

Follow the instructions below to properly clean and flush the system:

- 1. Verify electrical power to the unit is disconnected.
- 2. Install the system with the supply hose connected directly to the return riser valve. Use a single length of flexible hose.
- 3. Open all air vents. Fill the system with the water. DO NOT allow system to overflow. Bleed all air from the system. Pressurize and check the system for leaks and repair appropriately.
- 4. Verify all strainers are in place. (#20 stainless steel wire mesh strainer is recomended) Start the pumps, and systematically check each vent to ensure all air is bled from the system.
- 5. Verify make-up water is available. Adjust make-up water appropriately to replace the air which was bled from the system. Check and adjust the water/air level in the expansion tank.
- 6. Set the boiler to raise the loop temperature to approximately 85°F [29°C]. Open the a drain at the lowest point in the system. Adjust the make-up water replacement rate to equal the rate of bleed.

- 7. Refill the system and add trisodium phosphate in a proportion of approximately one pound per 150 gallons [1/2 kg per 750 L] of water (or other equivalent approved cleaning agent). Reset the boiler to raise the loop temperature to about 100°F [38°C]. Circulate the solution for a minimum of 8 to 24 hours. At the end of this period, shut off the circulating pump and drain the solution. Repeat system cleaning if desired.
- 8. When the cleaning process is complete, remove the short-circuited hoses. Reconnect the hoses to the proper supply, and return the connections to each of the units. Refill the system and bleed off all air.
- Test the system pH with litmus paper. The system water should be slightly alkaline (pH 7.5-8.5). Add chemicals, as appropriate, to maintain acidity levels.
- 10. When the system is successfully cleaned, flushed, refilled and bled, check the main system panels, safety cutouts and alarms. Set the controls to properly maintain loop temperatures.

Unit & System Checkout

WARNING! 🛦

WARNING! Polyolester Oil, commonly known as POE oil, is a synthetic oil used in many refrigeration systems including those with HFC-410A refrigerant. POE oil, if it ever comes in contact with PVC or CPVC piping, may cause failure of the PVC/CPVC. PVC/CPVC piping should never be used as supply or return water piping with water source heat pump products containing HFC-410A as system failures and property damage may result.

BEFORE POWERING SYSTEM, please check the following:

UNIT CHECKOUT

- □ Line Voltage and Wiring: Ensure Voltage is within an acceptable range for the unit and wiring and fuses/ breakers are properly sized. Low voltage wiring is complete.
- □ Unit Control Transformer: Ensure transformer has properly selected control voltage tap. 208-230V units are factory wired for 208V operation unless specified otherwise.
- Balancing/Shutoff Valves: Ensure all isolation valves are open (after system flushing - see System Checkout) water control valves wired and open or coax may freeze and burst.
- Entering Water and Air: Ensure entering water and air temperatures are within operating limits of Table 6.
- □ Low Water Temperature Cutout: Verify low water temperature cut-out on CXM/DXM is properly set.
- Unit Blower Wheel: Manually rotate blower wheel to verify free rotation and ensure that all blower wheels are secured to blower shaft and centered in housing.
- Blower Motor: Verify motor bolts are tight. DO NOT oil motors upon start-up. Fan motors are pre-oiled at factory.
- Check shaft pillow blocks, sheave and pulley are tight
- Verify sheave has been set to turns in design requirement. Record turns on start up log sheet.
- $\hfill\square$ Verify belt is straight and proper tension
- Condensate Line: Condensate line is open, trapped, vented, and properly pitched toward drain.
- Water Flow Balancing: Verify inlet and outlet water temperatures are recorded for each heat pump upon startup. This check can eliminate nuisance trip outs and high velocity water flows that can erode heat exchangers.

- Unit Air Coil & Filters: Ensure filter is clean and accessible. To obtain maximum performance and avoid possible condensate blow-off the coil should be cleaned using a 10% solution of dish washing detergent.
- □ Unit Controls: Verify CXM or DXM field selection options are proper and complete.

SYSTEM CHECKOUT

- System Water Temperature: Check water temperature for proper range and also verify heating and cooling setpoints for proper operation.
- □ System pH: System water pH is 7.5 8.5. Proper pH promotes longevity of hoses and fittings.
- System Flushing: Verify all hoses are connected end to end when flushing to ensure debris bypasses unit heat exchanger and water valves etc. Water used in the system must be potable quality initially and clean of dirt, piping slag, and strong chemical cleaning agents. Verify all air is purged from the system. Air in the system can cause poor operation or system corrosion.
- Cooling Tower/Boiler: Check equipment for proper setpoints and operation.
- □ Standby Pumps: Verify the standby pump is properly installed and in operating condition.
- □ System Controls: Verify system controls function and operate in the proper sequence.
- □ Low Water Temperature Cutout: Verify low water temperature cut-out controls are provided for the outdoor portion of the loop or operating problems will occur.
- System Control Center: Verify control center and alarm panel for proper setpoints and operation (if used).
- Miscellaneous: Note any questionable aspects of the installation.
- □ Log Data: Record data on startup log sheet in this manual or on web site. keep log for future reference.

A WARNING! A

WARNING! Verify ALL water controls are open and allow water flow prior to engaging the compressor. Freezing of the coax or water lines can permanently damage the heat pump.

WARNING!

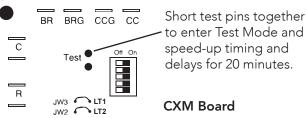
WARNING! To avoid equipment damage, DO NOT leave system filled in a building without heat during the winter unless antifreeze is added to system water. Condenser coils never fully drain by themselves and will freeze unless winterized with antifreeze.

Unit Start Up Procedure

🛦 WARNING! 🛦

WARNING! When the disconnect switch is closed, high voltage is present in some areas of the electrical panel. Exercise caution when working with energized equipment.

INSTALLER CAUTION! After making water connections on units equipped with Reheat, ensure the three union nuts on the internal three-way water valve are tight.


- 1. Turn thermostat fan position to "ON". Blower should start.
- 2. Balance air flow at registers.
- 3. Adjust all valves to their full open position. Turn on the line power to all heat pump units.
- Operate unit in cooling cycle. Room temperature should be approximately 45-100°F [7-38°C] DB. For Start-up check, loop water temperature entering the heat pumps should be between 45°F [7°C] and 110°F [43°C].
- 5. Two factors determine the operating limits of the system– (a) return air temperature, and (b) water temperature. When any one of these factors is at a minimum or maximum level, the other factor must be at normal levels to ensure proper unit operation.
 - a. Adjust the unit thermostat to the warmest position. Slowly reduce thermostat setting until the compressor activates.
 - b. Check for cool air delivery at the unit grille within a few minutes after the unit has begun to operate.
 Note: Units have a five minute time delay in the control circuit that can be eliminated on the CXM PCB as shown below in Figure 14. See controls description for detailed features of the control.
 - c. Verify that the compressor is on and that the water flow rate is correct by measuring pressure drop through the heat exchanger using the Pete's plugs and comparing to Table 7.
 - d. Check the elevation and cleanliness of the condensate lines. Dripping may be a sign of a blocked line. Check that the condensate trap includes a water seal.
 - e. Refer to Table 9. Check the temperature of both supply and discharge water. If temperature is within range, proceed with test. If temperature is outside operating range, check cooling refrigerant pressures in Table 8. Verify correct water flow by comparing unit pressure drop across the heat exchanger versus the data in Table 9. Heat of rejection can be calculated and compared to specification catalog.
 - f. Check air temperature drop across the coil when

compressor is operating. Air temperature should drop between 15°F [8°C] and 25°F [14°C].

- g. Turn thermostat to "OFF" position. A hissing noise indicates proper functioning of the reversing valve.
- Operate the heat pump in the heating cycle immediately after checking cooling cycle operation. Allow five (5) minutes between tests for pressure to equalize or cycle the reversing valve to equalize.
 - a. Turn thermostat to lowest setting and set thermostat switch to "HEAT" position.
 - b. Slowly turn thermostat to a higher temperature until the compressor activates.
 - c. Check for warm air delivery at the unit grille within a few minutes after the unit has begun to operate.
 - d. Check the temperature of both supply and discharge water. Refer to Table 8. If temperature is within range, proceed with test. If temperature is outside operating range, check heating refrigerant pressures in Table 8.
 - e. Check air temperature rise across the coil when compressor is operating. Air temperature should rise between 20°F [11°C] and 30°F [17°C]. Heat of extraction can be calculated and compared to specification catalog.
 - f. Check for vibration, noise, and water leaks.
- If unit fails to operate, perform troubleshooting analysis (CXM AOM or DXM AOM). If the check described fails to reveal the problem and the unit still does not operate, contact a trained service technician to ensure proper diagnosis and repair of the equipment.
- 8. When testing is complete, set system to maintain desired comfort level.
- BE CERTAIN TO FILL OUT AND FORWARD ALL WARRANTY REGISTRATION PAPERS TO ENERTECH.

Note: If performance during any mode appears abnormal, refer to the troubleshooting section of CXM or DXM AOM. To obtain maximum performance the air coil should be cleaned before start-up. A 10% solution of dishwasher detergent and water is recommended.

Figure 14: Test Mode Pins

Model	GPM		Pressu	re Drop	
Woder	GPM	30°F	50°F	70°F	90°F
ELV084	10.5	2.4	2.0	1.2	1.1
	15.75	5.5	4.6	3.4	3.0
	21	9.2	7.9	6.2	5.7
ELV096	12	3.8	3.1	2.3	2.0
	18	8.0	6.8	5.3	4.8
	24	13.0	11.2	9.2	8.6
ELV120	15	2.1	1.7	1.2	1.0
	22.5	5.3	4.4	3.5	3.2
	30	9.4	8.1	6.7	6.2
ELV150	19	2.7	2.1	1.5	1.3
	28	6.2	5.2	4.1	3.7
	38	11.0	9.5	7.7	7.2

Table 7: ELV Coax Water Pressure Drop

Madal	0.514	Pressure Drop							
Model	GPM	30°F	50°F	70°F	90°F				
ELV168	21	2.7	2.2	1.4	1.2				
	31.5	6.1	5.2	3.8	3.4				
	42	10.4	8.9	6.9	6.4				
ELV192	24	4.2	3.5	2.6	2.3				
	36	9.0	7.6	6.0	5.5				
	48	14.6	12.6	10.3	9.6				
ELV240	30	2.4	1.9	1.3	1.1				
	45	5.9	4.9	3.9	3.6				
	60	10.5	9.2	7.5	7.0				
ELV300	38	3.1	2.4	1.7	1.5				
	56	7.0	5.9	4.6	4.2				
	76	12.4	10.7	8.7	8.1				

CXM/DXM Safety Control Reset - Lockout - In Lockout mode, the Status LED will begin fast flashing. The compressor relay is turned off immediately. Lockout mode can be soft reset via the thermostat "Y" input or can be hard reset via the disconnect. The last fault causing the lockout will be stored in memory and can be viewed by going into test mode.

Fault Retry - In Fault Retry mode, the Status LED begins slow flashing to signal that the control is trying to recover from a fault input. The CXM control will stage off the outputs and then "try again" to satisfy the thermostat "Y" input call. Once the thermostat input calls are satisfied, the control will continue on as if no fault occurred. If 3 consecutive faults occur without satisfying the thermostat "Y" input call, then the control will go to Lockout mode. The last fault causing the lockout will be stored in memory and can be viewed by going into test mode.

Consult the CXM AOM or DXM AOM for complete descriptions.

CAUTION! Do not restart units without inspection and remedy of faulting condition. Equipment damage may occur.

Start-up Log Sheet

Installer: Complete unit and system checkout and follow unit start-up procedures in the IOM. Use this form to record unit information, temperatures and pressures during start-up. Keep this form for future reference.

Job Name:	Street Add	ress:
Model Number:	Serial Number:	
Unit Location in Building:		
Date:	Sales Order No:	
In order to minimize troublesho entries before the system is pu		failures, complete the following checks and data
Externat Static:		
Sheave Setting:	Turns OPEN	
Temperatures: F or C		Antifreeze:%
Pressures: PSIG or kPa		Туре:

	Cooling	Mode	Heating Mode
Return-Air Temperature	DB	WB	DB
Supply-Air Temperature	DB	WB	DB
Temperature Differential			
Entering Fluid Temperature			
Leaving Fluid Temperature			
Temperature Differential			
Water Coil Heat Exchanger (Water Pressure IN)			
Water Coil Heat Exchanger (Water Pressure OUT)			
Pressure Differential			
Compressor	•		
Amps			
Volts			
Discharge Line Temperature			
Flow Rate GPM (I/s)			
Motor			
Amps			
Volts			

Allow unit to run 15 minutes in each mode before taking data Do not connect gauge lines

3.0

1.5

23

3.0

1.5

2.3

3.0

1.5

2.3

3.0

1.5

2.3

3.0

50

70

90

110

128-130

128-130

124-131

131-136

130-135

130-138

134-140

133-139

131-138

139-152

138-146

137-144

Unit Operating Conditions

Cooling Heating GPM Entering Water Air per Water Suction Discharge Suction Discharge Super-Sub-Temp Temp Super-Temp °F ton Pressure Pressure Pressure Pressure heat cooling Rise Drop heat PSIG PSIG PSIG PSIG °F °F DB 1.5 60-69 297-321 9-15 30 2.3 63-72 301-325 9-15

10-14

11-17

12-24

7-12

8-11

11-14

7-10

8-10

8-10

5-10

6-10

7-10

12-20

10-18

8-16

11-20

10-16

7-13

10-15

9-13

7-12

9-19

7-17

6-14

21-23

15-17

9-11

20-22

14-17

9-12

18-21

13-17

9-12

18-20

13-16

9-12

21-26

21-26

21-26

20-25

20-25

20-25

20-25

20-25

20-25

19-24

19-24

19-24

Water

Temp

Drop

°F

7-10

5-8

4-6

10-13

7-11

5-8

13-19

10-15

7-10

17-20

13-16

9-11

Sub-

cooling

6-14

6-14

6-14

5-17

5-17

5-17

7-18

7-18

7-18

3-17

3-17

3-17

9-15

8-14

8-14

8-14

9-14

9-14

9-14

11-17

11-17

11-17

67-76

88-98

93-103

97-108

117-129

126-136

133-145

158-169

167-179

176-190

305-329

329-360

334-365

339-371

359-394

369-409

378-425

397-441

407-452

418-492

Air

Temp

Rise

°F DB

18-23

19-23 21-24

26-28

27-30

27-31

31-34

32-36

34-37

37-41

38-42

39-42

Table 8: Typical Unit Operating Pressures and Temperatures

227-249

213-234

199-219

311-334

297-323

283-318

388-428

370-406

353-383

485-520

469-497

449-475

*Based on Nominal 400 cfm per ton airflow and 70°F EAT htg and 80/67°F EAT cooling **Cooling air and water numbers can vary greatly with changes in humidity Subcooling is based upon the head pressure at compressor service port

Table 9: Water Temperature Change Through Heat Exchanger

Water Flow, gpm [i/m]	Rise, Cooling °F, [°C]	Drop, Heating °F, [°C]
For Closed Loop: Ground Source or Closed Loop Systems at 3 gpm per ton [3.9l/m per kW]	9-12	4-11
For Open Loop: Ground Water Systems at 1.5 gpm per ton [2.0l/m per kW]	18-23	7-20

Preventive Maintenance

Water Coil Maintenance

(Direct Ground Water Applications Only)

If the installation is performed in an area with a known high mineral content (125 P.P.M. or greater) in the water, it is best to establish with the owner a periodic maintenance schedule so the coil can be checked regularly. Consult the well water applications section of this manual for a more detailed water coil material selection. Should periodic coil cleaning be necessary, use standard coil cleaning procedures which are compatible with either the heat exchanger material or copper water lines. Generally, the more water flowing through the unit the less chance for scaling therefore 1.5 gpm per ton [2.0 l/m per kW] is recommended as a minimum flow.

Water Coil Maintenance

(All Other Water Loop Applications)

Generally water coil maintenance is not needed however, if the installation is located in a system with a known high dirt or debris content, it is best to establish with the owner a periodic maintenance schedule so the coil can be checked regularly. These dirty installations are a result of the deterioration of iron or galvanized piping or components in the system or open cooling towers requiring heavy chemical treatment and mineral buildup through water use. Should periodic coil cleaning be necessary, use standard coil cleaning procedures which are compatible with both the heat exchanger material and copper water lines. Generally, the more water flowing through the unit, the less chance for scaling, however flow rates over 3 gpm per ton can produce water (or debris) velocities that can erode the heat exchanger wall and ultimately produce leaks.

Filters

Filters must be clean to obtain maximum performance. They should be inspected every month under normal operating conditions and be replaced when necessary. Units should never be operated without a filter. Washable high efficiency electrostatic filters, when dirty, can exhibit a very high pressure drop for the fan motor and reduce air flow resulting in poor performance. It is especially important to provide consistent washing of these filters (in opposite direction of the normal air flow) once per month using a high pressure wash similar to that found at self-serve car washes.

Condensate Drain

In areas where airborne bacteria produce a slime in the drain pan, it may be necessary to treat chemically with an algaecide every three months or so to minimize the problem. The condensate pan may also need to be cleaned periodically to assure indoor air quality. The condensate drain can pick up lint and dirt, especially with dirty filters. Inspect the drain twice a year to avoid the possibility of overflow.

Compressor

Conduct annual amperage checks to ensure amp draw is no more than 10% greater than that indicated by serial plate data.

Fan Motors

All units have lubricated fan motors. Inspection should be performed for proper tension and excessive wear of drive belts every three months.

Air Coil

The air coil must be cleaned to obtain maximum performance. Check once a year under normal operating conditions and, if dirty, brush or vacuum clean. Care must be taken not to damage the aluminum fins while cleaning. **CAUTION: Fin edges are sharp.**

Cabinet

Do not allow water to stay in contact with the cabinet for long periods of time to prevent corrosion of the cabinet sheet metal. Generally vertical cabinets are set up from the floor a few inches for prevention. The cabinet can be cleaned using a mild detergent.

Refrigerant System

To maintain sealed circuit integrity, do not install service gauges unless unit operation appears abnormal. Reference the operating chart for pressure and temperatures. Verify that air and water flow rates and temperatures are at proper levels before servicing the refrigerant circuit.

🛦 WARNING! 🛦

WARNING! To avoid the release of refrigerant into the atmosphere, the refrigerant circuit of this unit must be serviced only by technicians who meet local, state, and federal proficiency requirements.

Functional Troubleshooting

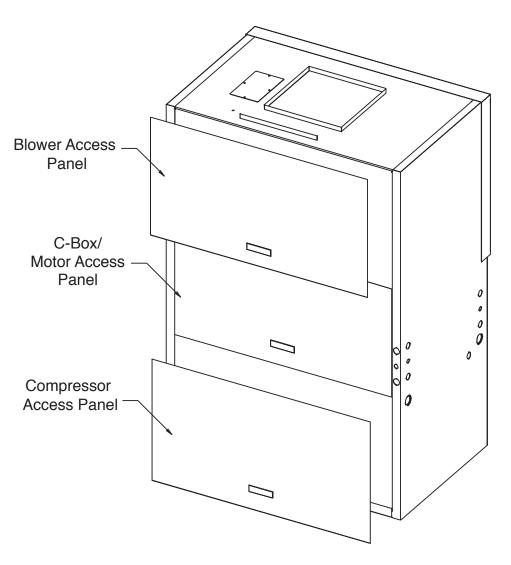
Fault	Htg	Clg	Possible Cause	Solution
				Check line voltage circuit breaker and disconnect.
Main power problems	X	x	Green Status LED Off	Check for line voltage between L1 and L2 on the contactor.
				Check for 24VAC between R and C on CXM/DXM'
	-			Check primary/secondary voltage on transformer.
		х	Reduced or no water flow in cooling	Check pump operation or valve operation/setting.
		Х	Water Temperature out of range in cooling	Check water flow adjust to proper flow rate. Bring water temp within design parameters.
HP Fault		^	Water remperature out of range in cooling	Check for dirty air filter and clean or replace.
Code 2				Check fan motor operation and airflow restrictions.
coue z	X		Reduced or no air flow in heating	Dirty Air Coil- construction dust etc.
High Pressure	L			Too high of external static. Check static vs blower table.
5	X		Air temperature out of range in heating	Bring return air temp within design parameters.
	X	X	Overcharged with refrigerant	Check superheat/subcooling vs typical operating condition table.
	X	X	Bad HP Switch	Check switch continuity and operation. Replace.
LP/LOC Fault	X	X	Insufficient charge	Check for refrigerant leaks
Code 3			g_	
	X		Compressor pump down at start-up	Check charge and start-up water flow.
Low Pressure / Loss of Charge				
				Check pump operation or water valve operation/setting.
	X		Reduced or no water flow in heating	Plugged strainer or filter. Clean or replace
LT1 Fault				Check water flow adjust to proper flow rate.
Code 4	X		Inadequate antifreeze level	Check antifreeze density with hydrometer.
Meter coll low			Improper temperature limit setting (30°F vs	
Water coil low	X		10°F [-1°C vs -2°C])	Clip JW3 jumper for antifreeze (10°F [-12°C]) use.
temperature limit	Х		Water Temperature out of range	Bring water temp within design parameters.
	X	Х	Bad thermistor	Check temp and impedance correlation per chart
				Check for dirty air filter and clean or replace.
LT2 Fault		x	Reduced or no air flow in cooling	Check fan motor operation and airflow restrictions.
Code 5				Too high of external static. Check static vs blower table.
		X	Air Temperature out of range	Too much cold vent air? Bring entering air temp within design parameters.
Air coil low			Improper temperature limit setting (30°F vs	
temperature limit		Х	10°F [-1°C vs -12°C])	Normal airside applications will require 30°F [-1°C] only.
	X	Х	Bad thermistor	Check temp and impedance correlation per chart.
	X	X	Blocked drain	Check for blockage and clean drain.
	X	X	Improper trap	Check trap dimensions and location ahead of vent.
		~		Check for piping slope away from unit.
Condensate Fault		x	Poor drainage	Check slope of unit toward outlet.
Code 6			l oor dramage	Poor venting. Check vent location.
couc o		X	Moisture on sensor	Check for moisture shorting to air coil.
	X	X	Plugged air filter	Replace air filter.
	x	X	Restricted Return Air Flow	Find and eliminate restriction. Increase return duct and/or grille size.
	X	<u> </u>	Restricted Return All Flow	
o "'' '				Check power supply and 24VAC voltage before and during operation.
Over/Under	X	Х	Under Voltage	Check power supply wire size.
Voltage Code 7			-	Check compressor starting. Need hard start kit?
(Auto reporting)	<u> </u>			Check 24VAC and unit transformer tap for correct power supply voltage.
(Auto resetting)		Х	Over Voltage	Check power supply voltage and 24VAC before and during operation.
	×			Check 24VAC and unit transformer tap for correct power supply voltage.
Unit Performance Sentinel	X		Heating mode LT2>125°F [52°C]	Check for poor air flow or overcharged unit.
Code 8		X	Cooling Mode LT1>125°F [52°C] OR LT2< 40°F [4°C])	Check for poor water flow, or air flow.
			40 F [4 C])	
Swapped Thermistor	X	x	LT1 and LT2 swapped	Reverse position of thermistors
Code 9		~		
	X	Х	No compressor operation	See "Only Fan Operates".
No Fault Code Shown	X	X	Compressor overload	Check and replace if necessary.
	X	X	Control board	Reset power and check operation.
	X	X	Dirty air filter	Check and clean air filter.
	X	X	Unit in "test mode"	Reset power or wait 20 minutes for auto exit.
Unit Short Cycles	X	X	Unit selection	Unit may be oversized for space. Check sizing for actual load of space.
	X	X	Compressor overload	Check and replace if necessary
	X	X	Thermostat position	Ensure thermostat set for heating or cooling operation.
	X	X	Unit locked out	Check for lockout codes. Reset power.
Only Ean Pune	X	X	Compressor Overload	Check compressor overload. Replace if necessary.
Only Fan Runs				Check thermostat wiring at heat pump. Jumper Y and R for compressor operation
	X	Х	Thermostat wiring	in test mode.
		1		
		1.1		Check G wiring at heat pump. Jumper G and R for fan operation
	X	Х	Thermostat wiring	Check G willing at heat pump. Jumper G and K for fair operation
			Thermostat wiring	
	x	x x	Thermostat wiring Fan motor relay	Jumper G and R for fan operation. Check for Line voltage across BR contacts.
Only Compressor Runs				
Only Compressor Runs	x	х		Jumper G and R for fan operation. Check for Line voltage across BR contacts.
Only Compressor Runs	X X X	x x x	Fan motor relay Fan motor	Jumper G and R for fan operation. Check for Line voltage across BR contacts. Check fan power enable relay operation (if present). Check for line voltage at motor. Check capacitor.
Only Compressor Runs	X X	x x	Fan motor relay	Jumper G and R for fan operation. Check for Line voltage across BR contacts. Check fan power enable relay operation (if present). Check for line voltage at motor. Check capacitor.
Only Compressor Runs	X X X	x x x	Fan motor relay Fan motor	Jumper G and R for fan operation. Check for Line voltage across BR contacts. Check fan power enable relay operation (if present). Check for line voltage at motor. Check capacitor. Check thermostat wiring at heat pump. Jumper Y and R for compressor operatio
Only Compressor Runs	X X X	x x x	Fan motor relay Fan motor	Jumper G and R for fan operation. Check for Line voltage across BR contacts. Check fan power enable relay operation (if present). Check for line voltage at motor. Check capacitor. Check thermostat wiring at heat pump. Jumper Y and R for compressor operatio in test mode
Only Compressor Runs	X X X	X X X X	Fan motor relay Fan motor Thermostat wiring	Jumper G and R for fan operation. Check for Line voltage across BR contacts. Check fan power enable relay operation (if present). Check for line voltage at motor. Check capacitor. Check thermostat wiring at heat pump. Jumper Y and R for compressor operation in test mode Set for cooling demand and check 24VAC on RV coil and at CXM/DXM board.
	X X X	X X X X	Fan motor relay Fan motor Thermostat wiring	Jumper G and R for fan operation. Check for Line voltage across BR contacts. Check fan power enable relay operation (if present). Check for line voltage at motor. Check capacitor. Check thermostat wiring at heat pump. Jumper Y and R for compressor operation in test mode Set for cooling demand and check 24VAC on RV coil and at CXM/DXM board. If RV is stuck, run high pressure up by reducing water flow and while operating
Unit Doesn't Operate	X X X	x x x x x	Fan motor relay Fan motor Thermostat wiring Reversing valve	Jumper G and R for fan operation. Check for Line voltage across BR contacts. Check fan power enable relay operation (if present). Check for line voltage at motor. Check capacitor. Check thermostat wiring at heat pump. Jumper Y and R for compressor operatio in test mode Set for cooling demand and check 24VAC on RV coil and at CXM/DXM board. If RV is stuck, run high pressure up by reducing water flow and while operating engage and disengage RV coil voltage to push valve.
	X X X	x x x x x x	Fan motor relay Fan motor Thermostat wiring Reversing valve Thermostat setup	Jumper G and R for fan operation. Check for Line voltage across BR contacts. Check fan power enable relay operation (if present). Check for line voltage at motor. Check capacitor. Check thermostat wiring at heat pump. Jumper Y and R for compressor operatio in test mode Set for cooling demand and check 24VAC on RV coil and at CXM/DXM board. If RV is stuck, run high pressure up by reducing water flow and while operating engage and disengage RV coil voltage to push valve. Check for 'O' RV setup not 'B'. Check C wiring at heat pump. Jumper O and R for RV coil 'click'.
Unit Doesn't Operate	X X X	X X X X X X X X	Fan motor relay Fan motor Thermostat wiring Reversing valve Thermostat setup Thermostat wiring	Jumper G and R for fan operation. Check for Line voltage across BR contacts. Check fan power enable relay operation (if present). Check for line voltage at motor. Check capacitor. Check thermostat wiring at heat pump. Jumper Y and R for compressor operatio in test mode Set for cooling demand and check 24VAC on RV coil and at CXM/DXM board. If RV is stuck, run high pressure up by reducing water flow and while operating engage and disengage RV coil voltage to push valve. Check for 'O' RV setup not 'B'.
Unit Doesn't Operate	X X X	x x x x x x	Fan motor relay Fan motor Thermostat wiring Reversing valve Thermostat setup	Jumper G and R for fan operation. Check for Line voltage across BR contacts. Check fan power enable relay operation (if present). Check for line voltage at motor. Check capacitor. Check thermostat wiring at heat pump. Jumper Y and R for compressor operatio in test mode Set for cooling demand and check 24VAC on RV coil and at CXM/DXM board. If RV is stuck, run high pressure up by reducing water flow and while operating engage and disengage RV coil voltage to push valve. Check for 'O' RV setup not' B'. Check O wiring at heat pump. Jumper O and R for RV coil 'click'. Put thermostat in cooling mode. Check 24 VAC on O (check between C and

Performance Troubleshooting

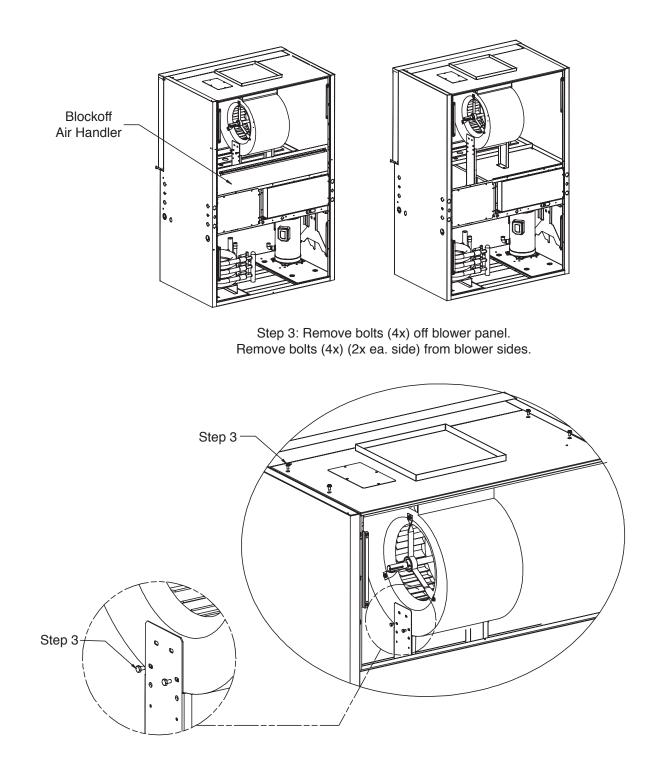
Performance Troubleshooting	Htg	Clg	Possible Cause	Solution
		Х	Dirty filter	Replace or clean.
				Check for dirty air filter and clean or replace.
	X		Reduced or no air flow in heating	Check fan motor operation and airflow restrictions.
				Too high of external static. Check static vs. blower table.
				Check for dirty air filter and clean or replace.
		х	Reduced or no air flow in cooling	Check fan motor operation and airflow restrictions.
				Too high of external static. Check static vs. blower table.
Insufficient capacity/ Not cooling or heating	x	x	Leaky duct work	Check supply and return air temperatures at the unit and at distant duct registers if significantly different, duct leaks are present.
U U		Х	Low refrigerant charge	Check superheat and subcooling per chart.
	X	Х	Restricted metering device	Check superheat and subcooling per chart. Replace.
		Х	Defective reversing valve	Perform RV touch test.
	X	Х	Thermostat improperly located	Check location and for air drafts behind stat.
	Х	Х	Unit undersized	Recheck loads & sizing. Check sensible clg. load and heat pump capacity.
	Х	Х	Scaling in water heat exchanger	Perform scaling check and clean if necessary.
	Х	Х	Inlet water too hot or too cold	Check load, loop sizing, loop backfill, ground moisture.
				Check for dirty air filter and clean or replace.
High Head Pressure	x		Reduced or no air flow in heating	Check fan motor operation and air flow restrictions.
				Too high of external static. Check static vs. blower table.
		x	Reduced or no water flow in cooling	Check pump operation or valve operation/setting.
		^	educed or no water flow in cooling	Check water flow. Adjust to proper flow rate.
		Х	Inlet water too hot	Check load, loop sizing, loop backfill, ground moisture.
	Х		Air temperature out of range in heating	Bring return air temperature within design parameters.
		Х	Scaling in water heat exchanger	Perform scaling check and clean if necessary.
		Х	Unit overcharged	Check superheat and subcooling. Re-weigh in charge.
		Х	Non-condensables in system	Vacuum system and re-weigh in charge.
	Х	Х	Restricted metering device.	Check superheat and subcooling per chart. Replace.
	x			Check pump operation or water valve operation/setting.
			Reduced water flow in heating.	Plugged strainer or filter. Clean or replace.
				Check water flow. Adjust to proper flow rate.
	Х		Water temperature out of range.	Bring water temperature within design parameters.
Low Suction Pressure				Check for dirty air filter and clean or replace.
		х	Reduced air flow in cooling.	Check fan motor operation and air flow restrictions.
				Too high of external static. Check static vs. blower table.
		Х	Air temperature out of range	Too much cold vent air? Bring entering air temperature within design parameters.
	Х	Х	Insufficient charge	Check for refrigerant leaks.
Low Discharge Air Temperature	Х		Too high of air flow	Check fan motor speed selection and air flow chart.
in Heating	Х		Poor performance	See 'Insufficient Capacity'
High humidity		Х	Too high of air flow	Check fan motor speed selection and airflow chart.
High humidity		Х	Unit oversized	Recheck loads & sizing. Check sensible clg load and heat pump capacity.

Troubleshooting Form

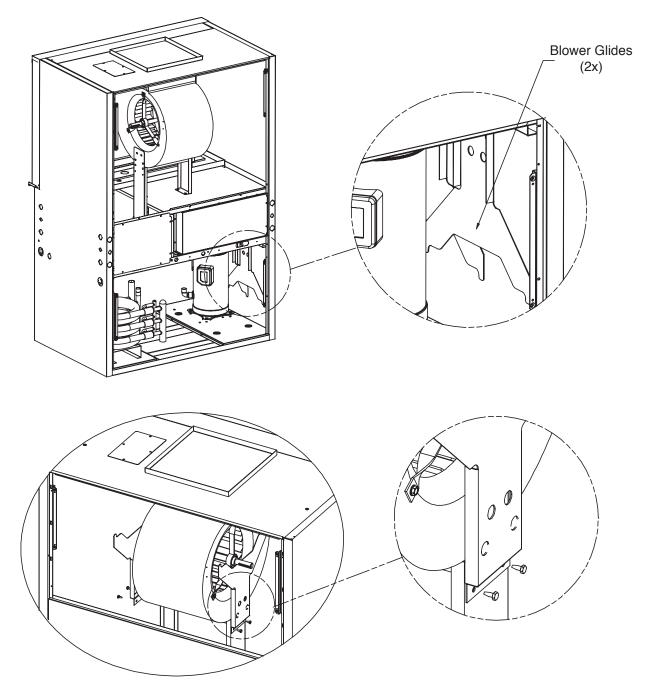
Customer:		Lo	ор Туре:	Startup Date:	
Model #:	Serial #:		Antifreez	е Туре & %:	
Complaint:					
	REFRIGERANT: H	IFC-410A	HE	A TING POSITION COOLING POSITION	
	OPERATING MOD	E: HEATING COO			
R	EFRIG FLOW - HEAT	TING REFRIG FI			
		RE	VERSING		
AIR CONDENSER (HEATING) VALVE 2 1					
		CONDENSER (COOLIN EVAPORATOR (HEATI			
				COMPRESSOR 3	
E	EXPANSION VALVE FILTEF			DISCHARGE	
			1 🕇		
		Source	,	_	
(5) LT2: HEATING					
LIQUID LINE	LIQUIE LINE				
		0			
Description	Heating	Cooling		Notes	
Voltage					
Compressor Amps					
1 Suction Temp					
2 Suction Press					
2a Saturation Temp					
2b Superheat					
3 Discharge Temp					
4 Discharge Press					
4a Saturation Temp					
4b Subcooling					
5 Liquid Line Temp					
6 Source Water In Tmp					
7 Source Water Out Tmp			Temp Diff. =		
8 Source Water In Pres					
9 Source Water Out Pres					
9a Press Drop					
9a Press Drop					


Heat of Extraction (Absorption) HE or HR =	or Heat of Rejection:	Fluid Factor: (for Btuh) 500 (Water); 485 (Antifreeze	Fluid Factor: (for kW) 4.18 (Water); 4.05 (Antifreeze)
Flow Rate x	Temp. Diff x	Fluid Factor	
Superheat = Suction temperatur	e - suction saturation	temp. =	(deg F)
Subcooling = Discharge saturat	emp. =	(deg F)	

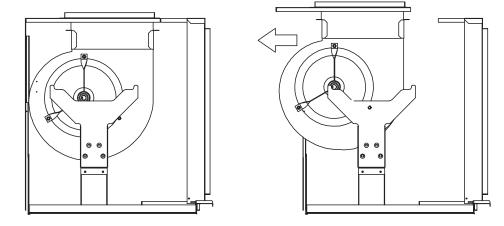
Note: Never connect refrigerant gauges during startup procedures. Conduct water-side analysis using P/T ports to determine water flow and temperature difference. If water-side analysis shows poor performance, refrigerant troubleshooting may be required. Connect refrigerant gauges as a last resort.


Field Conversion

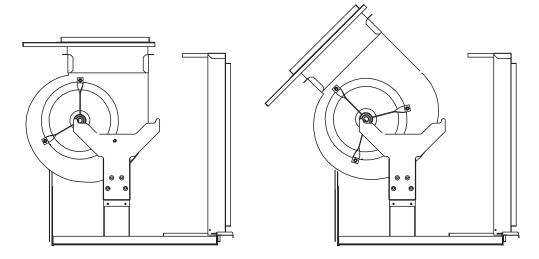
Follow All Warnings and Cautions in This Manual Before Attempting Conversion.


Top Discharge to Straight Discharge Convertible

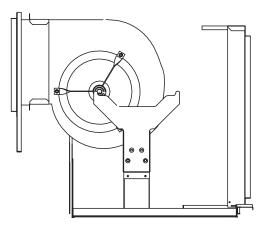
Step 1: Remove the three panels, as shown.

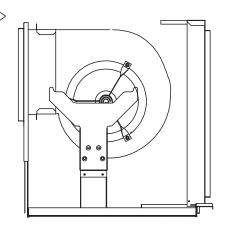


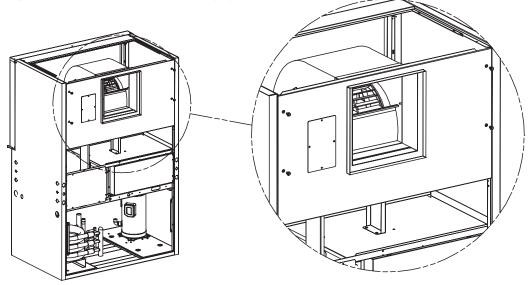
Step 2: Remove Blockoff Air Handler as shown. Loosen belt and remove.


Step 4: Remove bolts (4x) and take blower glides out.

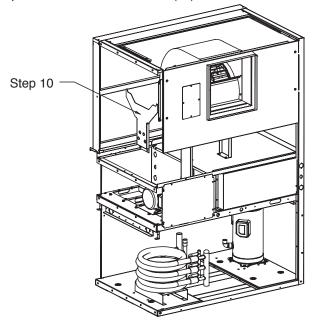
Step 5: Attach Blower Glides to Blower BTM Load Brackets as shown. Use bottom set of holes (.203 Dia.) on Blower BTM Load Brackets. Blower Shaft should be sitting right on top of the Blower Glides.

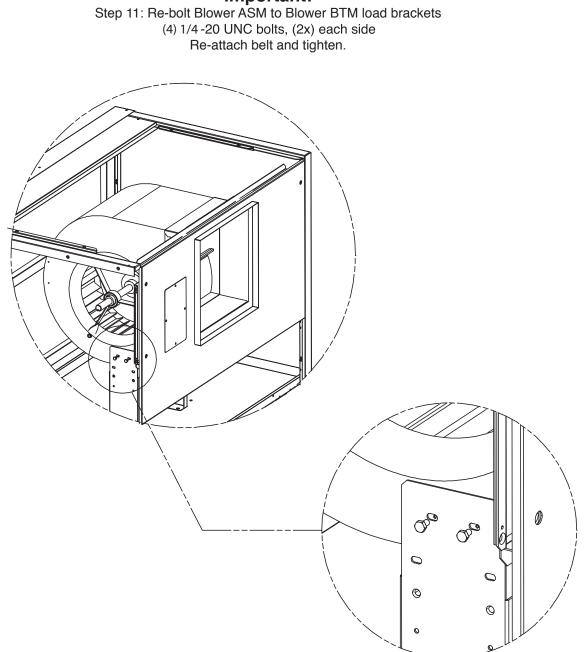


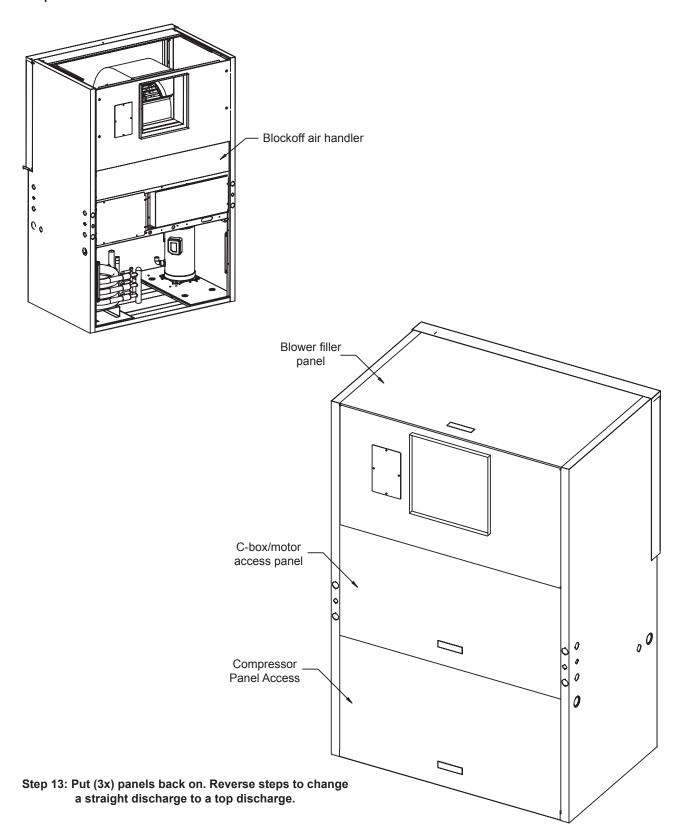

Step 6: Stand in front and pull Blower ASM on to the ridge of the Blower Glides.


Step 7: Rotate Blower ASM using Blower Glides as a guiding track.

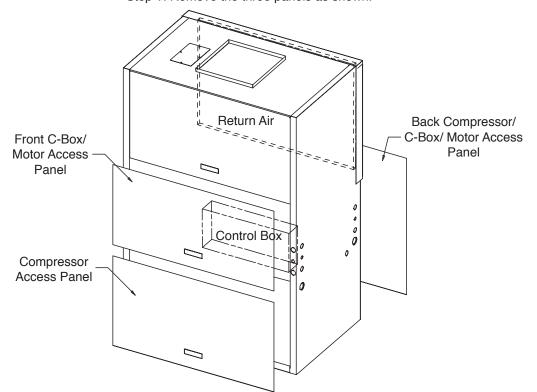
Step 8: When the Blower ASM is parallel to the floor, push the Blower ASM back so that the Blower Panel is flush with the unit.



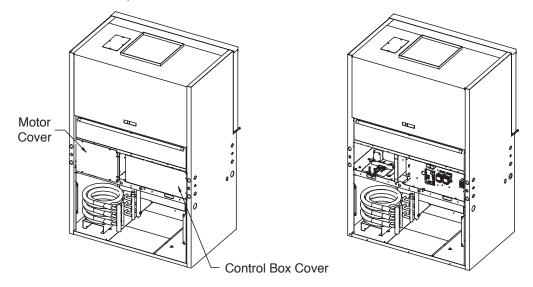


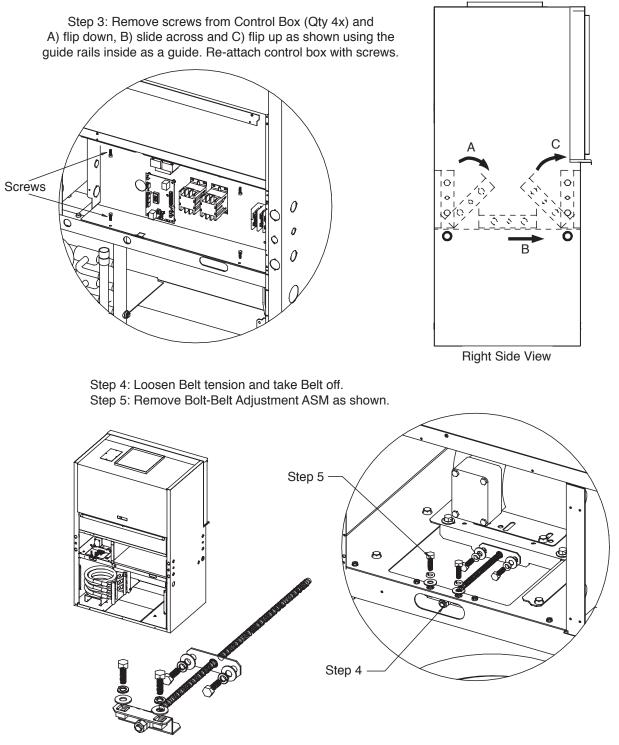

Step 9: Attach Blower ASM with bolts (4x) as shown.

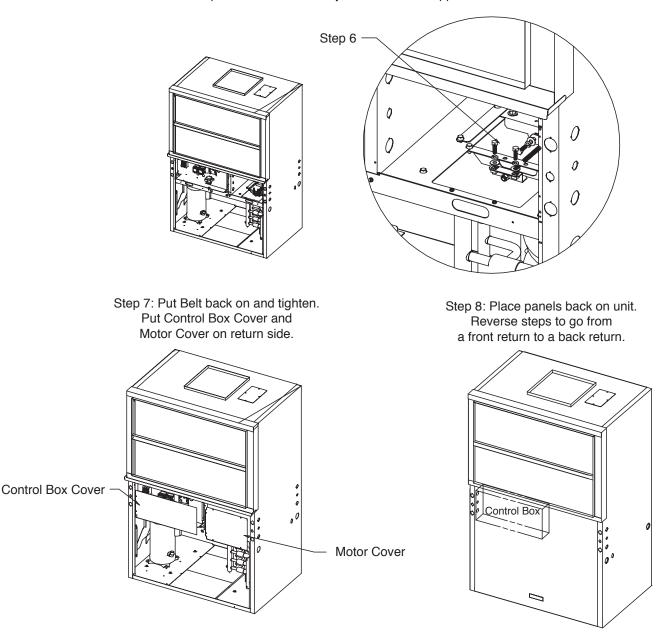
Step 10: Remove Bower Glides (2x) and re-attach back in compressor section.



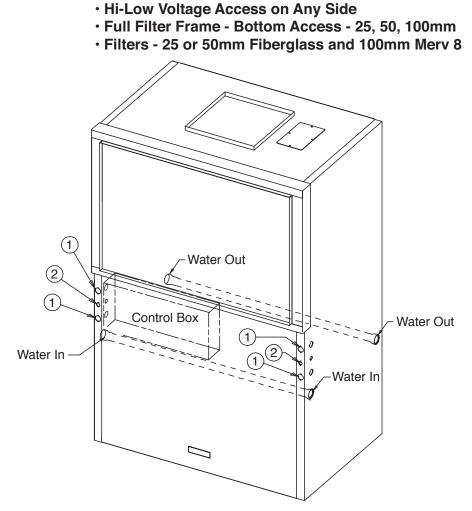
Important! Step 11: Re-bolt Blower ASM to Blower BTM load brackets


Step 12: Re-attach blockoff air handler as shown.


Front Control Box/ Motor Access to Back Access Convertible

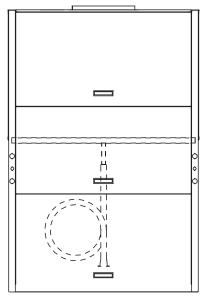

Step 1: Remove the three panels as shown.

Step 2: Remove Motor Cover and Control Box Cover as shown.

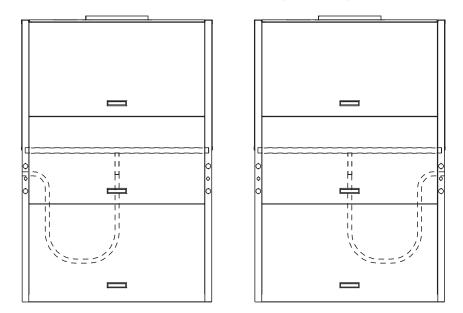


Bolt-Belt Adjustment ASM

Step 6: Move Bolt-Belt Adjustment ASM to opposite side and re-attach.


Front Return Top Discharge

Water In-Out Available on Either Side


Front Return Top Discharge

- Water inlet and outlet connections are available on either side (left or right) of the unit. MPT Plugs (Qty 2x) are shipped loose in plastic bag tied to water leg in front of the unit. Installer must plug up water inlet/outlet side that is not being connected.
- 2. Electrical access is available on either side (left or right) of unit and is also available (left or right) in the front of the unit.
- 3. 25mm Filter frame can be field converted to 50mm.

Condensate Drain Can Connect to Either Side of Unit

ELV Units come with flex hose and 1" FPT condensate connection tied inside (shown above)

Installer will untie flex hose and make an internal trap on either the left side (shown above) or on the right side. Internally attach mounting plate with FPT fitting.

Notes:

Revision History

Date:	Item:	Action:
9/1/2017	First Published	

ENERTECH[®] Geothermal Made Better[®]

Enertech Global, LLC 2506 Elm Street Greenville, IL 62246

97B0067N03

Enertech works continually to improve its products. As a result, the design and specifications of each product at the time for order may be changed without notice and may not be as described herein. Please contact Enertech Technical Service Department at 1-618-664-5860 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely Enertech's opinion or commendation of its products.